Skip to main content

Advertisement

Log in

Successful in vivo tumor visualization using fluorescence laparoscopy in a mouse model of disseminated alveolar rhabdomyosarcoma

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Surgery for rhabdomyosarcoma is challenging due to a lack of clear delineation between tumor and surrounding tissue. Mutilating surgery can be necessary in difficult tumor localizations. Therefore, novel diagnostic and therapeutic modalities are required. The aim of this study was to evaluate the in vivo tumor detection of RMS using fluorescence laparoscopy and to analyze the efficacy of hypericin-induced photodynamic therapy in a mouse model.

Methods

Seventeen NOD/LtSz-scid IL2Rγnull-mice were divided into four groups. In group 1, mCherry-expressing tumor cells and in group 2–4 non-transfected tumor cells were xenotransplanted. Three weeks later, one fluorochrome per group (ICG, ICG-cetuximab, hypericin) was injected. Fluorescence laparoscopy was carried out and tumors were resected using fluorescence guidance. In the hypericin group, photodynamic therapy was performed using blue light and apoptosis was evaluated by TUNEL test.

Results

A clear discrimination between healthy and tumor tissue was feasible by fluorescending properties with mCherry expressing tumor cells and after injection of hypericin. No fluorescence was detected in mice injected with ICG and ICG-labeled cetuximab. Hypericin photodynamic therapy induced apoptosis of tumor cells after exposure to blue light.

Conclusions

Intraoperative photodynamic diagnosis was feasible using mCherry-transfected tumor cells or hypericin. Additionally, intraoperative photodynamic therapy was possible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andrassy R (2008) Soft tissue sarcoma. In: Carachi R, Grosfeld J, Azmy A (eds) The surgery of childhood tumors. Springer, Berlin

    Google Scholar 

  2. Crist WM, Anderson JR, Meza JL, Fryer C, Raney RB, Ruymann FB, Breneman J, Qualman SJ, Wiener E, Wharam M, Lobe T, Webber B, Maurer HM, Donaldson SS (2001) Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol 19(12):3091–3102

    CAS  PubMed  Google Scholar 

  3. Newton WA Jr, Gehan EA, Webber BL, Marsden HB, van Unnik AJ, Hamoudi AB, Tsokos MG, Shimada H, Harms D, Schmidt D et al (1995) Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification—an Intergroup Rhabdomyosarcoma Study. Cancer 76(6):1073–1085

    Article  PubMed  Google Scholar 

  4. Lawrence W Jr, Anderson JR, Gehan EA, Maurer H (1997) Pretreatment TNM staging of childhood rhabdomyosarcoma: a report of the Intergroup Rhabdomyosarcoma Study Group. Children’s Cancer Study Group. Pediatric Oncology Group. Cancer 80(6):1165–1170

    Article  PubMed  Google Scholar 

  5. Crist WM, Garnsey L, Beltangady MS, Gehan E, Ruymann F, Webber B, Hays DM, Wharam M, Maurer HM (1990) Prognosis in children with rhabdomyosarcoma: a report of the intergroup rhabdomyosarcoma studies I and II. Intergroup Rhabdomyosarcoma Committee. J Clin Oncol 8(3):443–452

    CAS  PubMed  Google Scholar 

  6. Seitz G, Dantonello TM, Int-Veen C, Blumenstock G, Godzinski J, Klingebiel T, Schuck A, Leuschner I, Koscielniak E, Fuchs J (2011) Treatment efficiency, outcome and surgical treatment problems in patients suffering from localized embryonal bladder/prostate rhabdomyosarcoma: a report from the Cooperative Soft Tissue Sarcoma trial CWS-96. Pediatr Blood Cancer 56(5):718–724. doi:10.1002/pbc.22950

    Article  PubMed  Google Scholar 

  7. Jichlinski P, Leisinger HJ (2005) Fluorescence cystoscopy in the management of bladder cancer: a help for the urologist! Urol Int 74(2):97–101. doi:10.1159/000083277

    Article  PubMed  Google Scholar 

  8. Chan JK, Monk BJ, Cuccia D, Pham H, Kimel S, Gu M, Hammer-Wilson MJ, Liaw LH, Osann K, DiSaia PJ, Berns M, Tromberg B, Tadir Y (2002) Laparoscopic photodynamic diagnosis of ovarian cancer using 5-aminolevulinic acid in a rat model. Gynecol Oncol 87(1):64–70

    Article  CAS  PubMed  Google Scholar 

  9. Orth K, Russ D, Steiner R, Beger HG (2000) Fluorescence detection of small gastrointestinal tumours: principles, technique, first clinical experience. Langenbeck’s Arch Surg 385(7):488–494

    Article  CAS  Google Scholar 

  10. Ladner DP, Steiner RA, Allemann J, Haller U, Walt H (2001) Photodynamic diagnosis of breast tumours after oral application of aminolevulinic acid. Br J Cancer 84(1):33–37. doi:10.1054/bjoc.2000.1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kriegmair M, Baumgartner R, Knuchel R, Stepp H, Hofstadter F, Hofstetter A (1996) Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 155(1):105–109; discussion 109–110

    Article  CAS  PubMed  Google Scholar 

  12. Leunig A, Rick K, Stepp H, Gutmann R, Alwin G, Baumgartner R, Feyh J (1996) Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am J Surg 172(6):674–677

    Article  CAS  PubMed  Google Scholar 

  13. Till H, Bergmann F, Metzger R, Haeberle B, Schaeffer K, von Schweinitz D, Prosst RL (2005) Videoscopic fluorescence diagnosis of peritoneal and thoracic metastases from human hepatoblastoma in nude rats. Surg Endosc 19(11):1483–1486. doi:10.1007/s00464-005-0316-1

    Article  CAS  PubMed  Google Scholar 

  14. Seitz G, Warmann SW, Fuchs J, Mau-Holzmann UA, Ruck P, Heitmann H, Hoffman RM, Mahrt J, Muller GA, Wessels JT (2006) Visualization of xenotransplanted human rhabdomyosarcoma after transfection with red fluorescent protein. J Pediatr Surg 41(8):1369–1376. doi:10.1016/j.jpedsurg.2006.04.039

    Article  PubMed  Google Scholar 

  15. Seitz G, Warmann SW, Fuchs J, Heitmann H, Mahrt J, Busse AC, Ruck P, Hoffman RM, Wessels JT (2008) Imaging of cell trafficking and metastases of paediatric rhabdomyosarcoma. Cell Prolif 41(2):365–374. doi:10.1111/j.1365-2184.2008.00520.x

    Article  CAS  PubMed  Google Scholar 

  16. Withrow KP, Gleysteen JP, Safavy A, Skipper J, Desmond RA, Zinn K, Rosenthal EL (2007) Assessment of indocyanine green-labeled cetuximab to detect xenografted head and neck cancer cell lines. Otolaryngol Head Neck Surg 137(5):729–734. doi:10.1016/j.otohns.2007.06.736

    Article  PubMed  Google Scholar 

  17. Chen B, Xu Y, Roskams T, Delaey E, Agostinis P, Vandenheede JR, de Witte P (2001) Efficacy of antitumoral photodynamic therapy with hypericin: relationship between biodistribution and photodynamic effects in the RIF-1 mouse tumor model. Int J Cancer 93(2):275–282. doi:10.1002/ijc.1324

    Article  CAS  PubMed  Google Scholar 

  18. Seitz G, Krause R, Fuchs J, Heitmann H, Armeanu S, Ruck P, Warmann SW (2008) In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin. Oncol Rep 20(5):1277–1282

    CAS  PubMed  Google Scholar 

  19. Seitz G, Warmann SW, Armeanu S, Heitmann H, Ruck P, Hoffman RM, Fuchs J, Wessels JT (2007) In vitro photodynamic therapy of childhood rhabdomyosarcoma. Int J Oncol 30(3):615–620

    CAS  PubMed  Google Scholar 

  20. Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J, Agostinis P (2003) Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem 278(52):52231–52239. doi:10.1074/jbc.M307591200

    Article  CAS  PubMed  Google Scholar 

  21. Ritz R, Muller M, Weller M, Dietz K, Kuci S, Roser F, Tatagiba M (2005) Hypericin: a promising fluorescence marker for differentiating between glioblastoma and neurons in vitro. Int J Oncol 27(6):1543–1549

    CAS  PubMed  Google Scholar 

  22. Du HY, Bay BH, Olivo M (2003) Biodistribution and photodynamic therapy with hypericin in a human NPC murine tumor model. Int J Oncol 22(5):1019–1024

    CAS  PubMed  Google Scholar 

  23. Hermann D (2011) Immuntherapeutische Ansätze beim Rhabdomyosarkom: therapeutische Antikörper und Phagozytose. Eberhard Karl Universität Tübingen, Tübingen

    Google Scholar 

  24. Betz CS, Zhorzel S, Schachenmayr H, Stepp H, Havel M, Siedek V, Leunig A, Matthias C, Hopper C, Harreus U (2009) Endoscopic measurements of free-flap perfusion in the head and neck region using red-excited Indocyanine Green: preliminary results. J Plastic Reconstruct Aesthet Surg JPRAS 62(12):1602–1608. doi:10.1016/j.bjps.2008.07.042

    Article  CAS  Google Scholar 

  25. Kamuhabwa A, Agostinis P, Ahmed B, Landuyt W, van Cleynenbreugel B, van Poppel H, de Witte P (2004) Hypericin as a potential phototherapeutic agent in superficial transitional cell carcinoma of the bladder. Photochem Photobiol Sci 3(8):772–780. doi:10.1039/b315586b

    Article  CAS  PubMed  Google Scholar 

  26. Racinet H (1988) Formation d’oxygène singulet 1 delta g photosensibilisée par l’hypericine; étude cinétique en milieu micellaire non ionique. J Chem Phys Chim Biol 85:971–976

    CAS  Google Scholar 

  27. Wada A, Sakaeda T, Takara K, Hirai M, Kimura T, Ohmoto N, Zhou J, Nakamura T, Kobayashi H, Okamura N, Yagami T, Okumura K (2002) Effects of St John’s wort and hypericin on cytotoxicity of anticancer drugs. Drug Metab Pharmacokinet 17(5):467–474

    Article  CAS  PubMed  Google Scholar 

  28. D’Hallewin MA, Kamuhabwa AR, Roskams T, De Witte PA, Baert L (2002) Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int 89(7):760–763

    Article  PubMed  Google Scholar 

  29. Kamuhabwa AA, Di Mavungu JD, Baert L, D’Hallewin MA, Hoogmartens J, de Witte PA (2005) Determination of hypericin in human plasma by high-performance liquid chromatography after intravesical administration in patients with transitional cell carcinoma of the bladder. Eur J Pharm Biopharm 59(3):469–474. doi:10.1016/j.ejpb.2004.09.013

    Article  CAS  PubMed  Google Scholar 

  30. Tian R, Koyabu N, Morimoto S, Shoyama Y, Ohtani H, Sawada Y (2005) Functional induction and de-induction of P-glycoprotein by St. John’s wort and its ingredients in a human colon adenocarcinoma cell line. Drug Metab Dispos Biol Fate Chem 33(4):547–554. doi:10.1124/dmd.104.002485

    Article  CAS  PubMed  Google Scholar 

  31. VanderWerf QM, Saxton RE, Chang A, Horton D, Paiva MB, Anderson J, Foote C, Soudant J, Mathey A, Castro DJ (1996) Hypericin: a new laser phototargeting agent for human cancer cells. Laryngoscope 106(4):479–483

    Article  CAS  PubMed  Google Scholar 

  32. Sarissky M, Lavicka J, Kocanova S, Sulla I, Mirossay A, Miskovsky P, Gajdos M, Mojzis J, Mirossay L (2005) Diazepam enhances hypericin-induced photocytotoxicity and apoptosis in human glioblastoma cells. Neoplasma 52(4):352–359

    CAS  PubMed  Google Scholar 

  33. Chen B, Roskams T, de Witte PA (2002) Antivascular tumor eradication by hypericin-mediated photodynamic therapy. Photochem Photobiol 76(5):509–513

    Article  CAS  PubMed  Google Scholar 

  34. Yee KK, Soo KC, Olivo M (2005) Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int J Mol Med 16(6):993–1002

    CAS  PubMed  Google Scholar 

  35. Ludicke F, Gabrecht T, Lange N, Wagnieres G, Van Den Bergh H, Berclaz L, Major AL (2003) Photodynamic diagnosis of ovarian cancer using hexaminolaevulinate: a preclinical study. Br J Cancer 88(11):1780–1784. doi:10.1038/sj.bjc.6600958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gahlen J, Stern J, Laubach HH, Pietschmann M, Herfarth C (1999) Improving diagnostic staging laparoscopy using intraperitoneal lavage of delta-aminolevulinic acid (ALA) for laparoscopic fluorescence diagnosis. Surgery 126(3):469–473

    Article  CAS  PubMed  Google Scholar 

  37. Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ (2012) Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 18(10):2726–2732. doi:10.1158/1078-0432.ccr-11-3237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Herrmann D, Seitz G, Warmann SW, Bonin M, Fuchs J, Armeanu-Ebinger S (2010) Cetuximab promotes immunotoxicity against rhabdomyosarcoma in vitro. J Immunother (Hagerstown, Md: 1997) 33(3):279–286. doi:10.1097/CJI.0b013e3181c549b0

    Article  CAS  Google Scholar 

  39. Chen B, de Witte PA (2000) Photodynamic therapy efficacy and tissue distribution of hypericin in a mouse P388 lymphoma tumor model. Cancer Lett 150(1):111–117

    Article  CAS  PubMed  Google Scholar 

  40. Head CS, Luu Q, Sercarz J, Saxton R (2006) Photodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma. World J Surg Oncol 4:87. doi:10.1186/1477-7819-4-87

    Article  PubMed Central  PubMed  Google Scholar 

  41. Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, Stepp H, Tonn JC, Baumgartner R, Herms J, Kreth FW (2008) Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 87(1):103–109. doi:10.1007/s11060-007-9497-x

    Article  CAS  PubMed  Google Scholar 

  42. Ritz R, Scheidle C, Noell S, Roser F, Schenk M, Dietz K, Strauss WS (2012) In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells. PLoS ONE 7(12):e51974. doi:10.1371/journal.pone.0051974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. DeLaney TF, Sindelar WF, Tochner Z, Smith PD, Friauf WS, Thomas G, Dachowski L, Cole JW, Steinberg SM, Glatstein E (1993) Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int J Radiat Oncol Biol Phys 25(3):445–457

    Article  CAS  PubMed  Google Scholar 

  44. Meruelo D, Lavie G, Lavie D (1988) Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci USA 85(14):5230–5234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ritz R, Daniels R, Noell S, Feigl GC, Schmidt V, Bornemann A, Ramina K, Mayer D, Dietz K, Strauss WS, Tatagiba M (2012) Hypericin for visualization of high grade gliomas: first clinical experience. Eur J Surg Oncol 38(4):352–360. doi:10.1016/j.ejso.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  46. Traynor NJ, Beattie PE, Ibbotson SH, Moseley H, Ferguson J, Woods JA (2005) Photogenotoxicity of hypericin in HaCaT keratinocytes: implications for St. John’s Wort supplements and high dose UVA-1 therapy. Toxicol Lett 158(3):220–224. doi:10.1016/j.toxlet.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  47. Laakmann G, Jahn G, Schule C (2002) Hypericum perforatum extract in treatment of mild to moderate depression. Clinical and pharmacological aspects. Der Nervenarzt 73(7):600–612

    Article  CAS  PubMed  Google Scholar 

  48. Korbelik M (1996) Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg 14(5):329–334

    CAS  PubMed  Google Scholar 

  49. Eastin WC, Mennear JH, Tennant RW, Stoll RE, Branstetter DG, Bucher JR, McCullough B, Binder RL, Spalding JW, Mahler JF (2001) Tg.AC genetically altered mouse: assay working group overview of available data. Toxicol Pathol 29(Suppl):60–80

    Article  CAS  PubMed  Google Scholar 

  50. Sattler S, Schaefer U, Schneider W, Hoelzl J, Lehr CM (1997) Binding, uptake, and transport of hypericin by Caco-2 cell monolayers. J Pharm Sci 86(10):1120–1126. doi:10.1021/js970004a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by KARL STORZ GmbH & Co. KG, Tuttlingen, Germany, which provided us the laparoscopic equipment and the technical assistance. We also thank Hannes Schramm (Department of Photography, University Hospital Tübingen, Tübingen, Germany) for his support in realization of the figures.

Disclosures

Cristian Urla, Sorin Armeanu-Ebinger, Jörg Fuchs, and Guido Seitz have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Armeanu-Ebinger.

Additional information

Cristian Urla and Sorin Armeanu-Ebinger have contributed equally to the authorship of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urla, C., Armeanu-Ebinger, S., Fuchs, J. et al. Successful in vivo tumor visualization using fluorescence laparoscopy in a mouse model of disseminated alveolar rhabdomyosarcoma. Surg Endosc 29, 1105–1114 (2015). https://doi.org/10.1007/s00464-014-3770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3770-9

Keywords

Navigation