Skip to main content
Log in

Effects of Tongue Exercise Frequency on Tongue Muscle Biology and Swallowing Physiology in a Rat Model

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Age-related changes in muscle composition and function are often treated using exercise, including muscles of the tongue to treat swallowing impairments (dysphagia). Although tongue exercise is commonly prescribed, optimal tongue exercise doses have not been determined. The purpose of this study was to evaluate effects of varying tongue exercise frequency on tongue force, genioglossus muscle fiber size, composition and metabolism, and swallowing in a rat model. We randomized 41 old and 40 young adult Fischer 344/Brown Norway rats into one of four tongue exercise groups: 5 days/week; 3 days/week; 1 day/week; or sham. Tongue force was higher following all exercise conditions (vs sham); the 5 day/week group had the greatest change in tongue force (p < 0.001). There were no exercise effects on genioglossus (GG) fiber size or MyHC composition (p > 0.05). Significant main effects for age showed a greater proportion of Type I fibers in (p < 0.0001) and increased fiber size of IIa fibers (p = 0.026) in old. There were no significant effects of citrate synthase activity or PGC-1α expression. Significant differences were found in bolus speed and area (size), but findings were potentially influenced by variability. Our findings suggest that tongue force is influenced by exercise frequency; however, these changes were not reflected in characteristics of the GG muscle assayed in this study. Informed by findings of this study, future work in tongue dose optimization will be required to provide better scientific premise for clinical treatments in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from [69]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schindler JS, Kelly JH. Swallowing disorders in the elderly. Laryngoscope. 2002;112(4):589–602.

    PubMed  Google Scholar 

  2. Roy N, et al. Dysphagia in the elderly: preliminary evidence of prevalence, risk factors, and socioemotional effects. Ann Otol Rhinol Laryngol. 2007;116(11):858–65.

    PubMed  Google Scholar 

  3. Ortman JM, Velkoff VA, Hogan H. An aging nation: the older population in the United States. Washington, DC: US Census Bureau; 2014. p. 25–1140.

    Google Scholar 

  4. Robbins J, et al. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology. 1992;103(3):823–9.

    CAS  PubMed  Google Scholar 

  5. Cook I, et al. (1994) Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol Gastrointest Liver Physiol. 1994;266(6):972–7.

    Google Scholar 

  6. Martin BJ, et al. The association of swallowing dysfunction and aspiration pneumonia. Dysphagia. 1994;9(1):1–6.

    CAS  PubMed  Google Scholar 

  7. Mcconnel F. Analysis of pressure generation and bolus transit during pharyngeal swallowing. Laryngoscope. 1988;98(1):71–8.

    CAS  PubMed  Google Scholar 

  8. Tamine K, et al. Age-related changes in tongue pressure during swallowing. J Dent Res. 2010;89(10):1097–101.

    CAS  PubMed  Google Scholar 

  9. Nicosia MA, et al. Age effects on the temporal evolution of isometric and swallowing pressure. J Gerontol A. 2000;55(11):M634–M640640.

    CAS  Google Scholar 

  10. Maeda K, Akagi J. Decreased tongue pressure is associated with sarcopenia and sarcopenic dysphagia in the elderly. Dysphagia. 2015;30(1):80–7.

    PubMed  Google Scholar 

  11. Yoshida M, et al. Decreased tongue pressure reflects symptom of dysphagia. Dysphagia. 2006;21(1):61–5.

    PubMed  Google Scholar 

  12. Namasivayam AM, Steele CM, Keller H. The effect of tongue strength on meal consumption in long term care. Clin Nutr. 2016;35(5):1078–83.

    PubMed  Google Scholar 

  13. Altman KW, Yu G-P, Schaefer SD. Consequence of dysphagia in the hospitalized patient: impact on prognosis and hospital resources. Arch Otolaryngol Head Neck Surg. 2010;136(8):784–9.

    PubMed  Google Scholar 

  14. Cabre M, et al. Prevalence and prognostic implications of dysphagia in elderly patients with pneumonia. Age Ageing. 2010;39(1):39–45.

    PubMed  Google Scholar 

  15. Cichero JA, Altman KW. Definition, prevalence and burden of oropharyngeal dysphagia: a serious problem among older adults worldwide and the impact on prognosis and hospital resources, in Stepping stones to living well with dysphagia. Basel: Karger Publishers; 2012. p. 1–11.

    Google Scholar 

  16. Eslick GD, Talley N. Dysphagia: epidemiology, risk factors and impact on quality of life–a population-based study. Aliment Pharmacol Ther. 2008;27(10):971–9.

    CAS  PubMed  Google Scholar 

  17. Humbert IA, Robbins J. Dysphagia in the elderly. Phys Med Rehabil Clin N Am. 2008;19(4):853–66.

    PubMed  PubMed Central  Google Scholar 

  18. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5 Suppl):990s–1s.

    CAS  PubMed  Google Scholar 

  19. Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci. 1988;84(2):275–94.

    CAS  PubMed  Google Scholar 

  20. Evans WJ, Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A. 1995;50(Special Issue):11–6.

    Google Scholar 

  21. Scott W, Stevens J, Binder-Macleod SA. Human skeletal muscle fiber type classifications. Phys Ther. 2001;81(11):1810–6.

    CAS  PubMed  Google Scholar 

  22. Alnaqeeb M, Goldspink G. Changes in fibre type, number and diameter in developing and ageing skeletal muscle. J Anat. 1987;153:31.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Porter MM, Vandervoort AA, Lexell J. Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports. 1995;5(3):129–42.

    CAS  PubMed  Google Scholar 

  24. Welle S. Cellular and molecular basis of age-related sarcopenia. Can J Appl Physiol. 2002;27(1):19–411.

    CAS  PubMed  Google Scholar 

  25. Luff AR. Age-associated changes in the innervation of muscle fibers and changes in the mechanical properties of motor units. Ann N Y Acad Sci. 1998;854(1):92–101.

    CAS  PubMed  Google Scholar 

  26. Proctor DN, Balagopal P, Nair KS. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr. 1998;128(2):351S–5S.

    CAS  PubMed  Google Scholar 

  27. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–27.

    CAS  PubMed  Google Scholar 

  28. Frontera WR, Zayas AR, Rodriguez N. Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin. 2012;23(1):201–7.

    Google Scholar 

  29. Larsson L, Ansved T. Effects of ageing on the motor unit. Prog Neurobiol. 1995;45(5):397–458.

    CAS  PubMed  Google Scholar 

  30. Staron RS. Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol. 1997;22(4):307–27.

    CAS  PubMed  Google Scholar 

  31. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Technol. 2000;50(6):500–9.

    CAS  Google Scholar 

  32. Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. Int Rev Cytol. 1997;170:143–223.

    CAS  PubMed  Google Scholar 

  33. Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012. https://doi.org/10.1155/2012/194821.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rooyackers OE, et al. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci. 1996;93(26):15364–9.

    CAS  PubMed  Google Scholar 

  35. Miquel J. An integrated theory of aging as the result of mitochondrial-DNA mutation in differentiated cells. Arch Gerontol Geriatr. 1991;12(2–3):99–117.

    CAS  PubMed  Google Scholar 

  36. Marzetti E, Leeuwenburgh C. Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol. 2006;41(12):1234–8.

    CAS  PubMed  Google Scholar 

  37. Boffoli D, et al. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta. 1994;1226(1):73–82.

    CAS  PubMed  Google Scholar 

  38. Carter HN, Chen CC, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology. 2015;30(3):208–23.

    CAS  PubMed  Google Scholar 

  39. Adhihetty PJ, et al. Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol. 2003;88(1):99–107.

    CAS  PubMed  Google Scholar 

  40. Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–51.

    PubMed  Google Scholar 

  41. Wu Z, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.

    CAS  PubMed  Google Scholar 

  42. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24(1):78–90.

    CAS  PubMed  Google Scholar 

  43. Tipton CM, Medicine ACOS. ACSM's advanced exercise physiology. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  44. Derbré F, et al. Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. Age. 2012;34(3):669–79.

    PubMed  Google Scholar 

  45. Gibala MJ, et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J Appl Physiol. 2009;106(3):929–34.

    CAS  PubMed  Google Scholar 

  46. Tanaka K, et al. Preventive effects of electrical stimulation on inflammation-induced muscle mitochondrial dysfunction. Acta Histochem. 2016;118(5):464–70.

    CAS  PubMed  Google Scholar 

  47. Kawai N, et al. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study. J Anat. 2010;216(6):717–23.

    PubMed  PubMed Central  Google Scholar 

  48. Wright DC, et al. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. J Biol Chem. 2007;282(1):194–9.

    CAS  PubMed  Google Scholar 

  49. Brealey D, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet. 2002;360(9328):219–23.

    CAS  Google Scholar 

  50. Shepherd D, Garland P. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J. 1969;114(3):597–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hood DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001;90(3):1137–57.

    CAS  PubMed  Google Scholar 

  52. Wiegand G, Remington SJ. Citrate synthase: structure, control, and mechanism. Annu Rev Biophys Biophys Chem. 1986;15(1):97–117.

    CAS  PubMed  Google Scholar 

  53. Srere P. [1] Citrate synthase: [EC 4.1. 3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol. 1969;13:3–11.

    CAS  Google Scholar 

  54. Robbins J, et al. The effects of lingual exercise in stroke patients with dysphagia. Arch Phys Med Rehabil. 2007;88(2):150–8.

    PubMed  Google Scholar 

  55. Lazarus C. Tongue strength and exercise in healthy individuals and in head and neck cancer patients. Seminars in speech and language. New York: Thieme Medical Publishers; 2006.

    Google Scholar 

  56. Oh JC. Effects of tongue strength training and detraining on tongue pressures in healthy adults. Dysphagia. 2015;30(3):315–20.

    PubMed  Google Scholar 

  57. Park J-S, Kim H-J, Oh D-H. Effect of tongue strength training using the Iowa oral performance instrument in stroke patients with dysphagia. J Phys Ther Sci. 2015;27(12):3631–4.

    PubMed  PubMed Central  Google Scholar 

  58. Robbins J, et al. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc. 2005;53(9):1483–9.

    PubMed  Google Scholar 

  59. Rogus-Pulia N, et al. Effects of device-facilitated isometric progressive resistance oropharyngeal therapy on swallowing and health-related outcomes in older adults with dysphagia. J Am Geriatr Soc. 2016;64(2):417–24.

    PubMed  Google Scholar 

  60. Robbins J, et al. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A. 1995;50(5):M257–M262262.

    CAS  Google Scholar 

  61. Burkhead LM, Sapienza CM, Rosenbek JC. Strength-training exercise in dysphagia rehabilitation: principles, procedures, and directions for future research. Dysphagia. 2007;22(3):251–65.

    PubMed  Google Scholar 

  62. Langmore SE, Pisegna JM. Efficacy of exercises to rehabilitate dysphagia: a critique of the literature. Int J Speech Lang Pathol. 2015;17(3):222–9.

    PubMed  Google Scholar 

  63. Ferguson B. ACSM’s guidelines for exercise testing and prescription 9th Ed. J Can Chiropractic Assoc. 2014;58(3):328.

    Google Scholar 

  64. Yeates EM, Molfenter SM, Steele CM. Improvements in tongue strength and pressure-generation precision following a tongue-pressure training protocol in older individuals with dysphagia: three case reports. Clin Interv Aging. 2008;3:735.

    PubMed  PubMed Central  Google Scholar 

  65. Krisciunas GP, et al. Survey of usual practice: dysphagia therapy in head and neck cancer patients. Dysphagia. 2012;27(4):538–49.

    PubMed  PubMed Central  Google Scholar 

  66. Virani A, et al. Effects of 2 different swallowing exercise regimens during organ-preservation therapies for head and neck cancers on swallowing function. Head Neck. 2015;37(2):162–70.

    PubMed  Google Scholar 

  67. McKenna VS, et al. A systematic review of isometric lingual strength-training programs in adults with and without dysphagia. Am J Speech Lang Pathol. 2017;26(2):524–39.

    PubMed  PubMed Central  Google Scholar 

  68. Peterson MD, Rhea MR, Alvar BA. Applications of the dose-response for muscular strength development: areview of meta-analytic efficacy and reliability for designing training prescription. J Strength Cond Res. 2005;19(4):950–8.

    PubMed  Google Scholar 

  69. Connor NP, et al. Effect of tongue exercise on protrusive force and muscle fiber area in aging rats. J Speech Lang Hear Res. 2009;52(3):732–44.

    PubMed  Google Scholar 

  70. Connor NP, et al. Differences in age-related alterations in muscle contraction properties in rat tongue and hindlimb. J Speech Lang Hear Res. 2008;51(4):818–27.

    PubMed  PubMed Central  Google Scholar 

  71. Kletzien H, et al. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties. J Appl Physiol. 2013;114(4):472–81.

    PubMed  Google Scholar 

  72. Schaser AJ, Ciucci MR, Connor NP. Cross-activation and detraining effects of tongue exercise in aged rats. Behav Brain Res. 2016;297:285–96.

    PubMed  Google Scholar 

  73. Krekeler BN, Connor NP. Age-related changes in mastication are not improved by tongue exercise in a rat model. Laryngoscope. 2017;127(1):E29–e34.

    PubMed  Google Scholar 

  74. Schaser AJ, et al. Biochemistry of the anterior, medial, and posterior genioglossus in the aged rat. Dysphagia. 2011;26(3):256–63.

    PubMed  Google Scholar 

  75. Russell JA, et al. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease. Dysphagia. 2013;28(1):95–104.

    PubMed  Google Scholar 

  76. Lenth RV (2006) Java applets for power and sample size [computer software]. 9.

  77. Toth LA, Gardiner TW. Food and water restriction protocols: physiological and behavioral considerations. J Am Assoc Lab Anim Sci. 2000;39(6):9–17.

    CAS  Google Scholar 

  78. Cullins MJ, Connor NP. Alterations of intrinsic tongue muscle properties with aging. Muscle Nerve. 2017;56:E119–E12525.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE. 2012;7(4):e35273.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schiaffino S, et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989;10(3):197–205.

    CAS  PubMed  Google Scholar 

  81. Lucas CA, Kang LH, Hoh JF. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun. 2000;272(1):303–8.

    CAS  PubMed  Google Scholar 

  82. Eddinger TJ, Moss RL, Cassens RG. Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. J Histochem Cytochem. 1985;33(10):1033–41.

    CAS  PubMed  Google Scholar 

  83. Smith LR, Barton ER. SMASH-semi-automatic muscle analysis using segmentation of histology: a MATLAB application. Skeletal muscle. 2014;4(1):1.

    Google Scholar 

  84. Li R, Shen Y. An old method facing a new challenge: re-visiting housekeeping proteins as internal reference control for neuroscience research. Life Sci. 2013;92(13):747–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Eaton SL, et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS ONE. 2013;8(8):e72457.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Antharavally BS, et al. A high-affinity reversible protein stain for Western blots. Anal Biochem. 2004;329(2):276–80.

    CAS  PubMed  Google Scholar 

  87. McLester JR, Bishop E, Guilliams M. Comparison of 1 day and 3 days per week of equal-volume resistance training in experienced subjects. J Strength Cond Res. 2000;14(3):273–81.

    Google Scholar 

  88. Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc. 2010;42(5):902–14.

    PubMed  Google Scholar 

  89. Bailey EF, Rice AD, Fuglevand AJ. Firing patterns of human genioglossus motor units during voluntary tongue movement. J Neurophysiol. 2007;97(1):933–6.

    PubMed  Google Scholar 

  90. Palmer PM, et al. Quantitative contributions of the muscles of the tongue, floor-of-mouth, jaw, and velum to tongue-to-palate pressure generation. J Speech Lang Hear Res. 2008;51(4):828–35.

    PubMed  Google Scholar 

  91. Ota F, Connor NP, Konopacki R. Alterations in contractile properties of tongue muscles in old rats. Ann Otol Rhinol Laryngol. 2005;114(10):799–803.

    PubMed  Google Scholar 

  92. Mathew OP, Abu-Osba YK, Thach BT. Influence of upper airway pressure changes on genioglossus muscle respiratory activity. J Appl Physiol. 1982;52(2):438–44.

    CAS  PubMed  Google Scholar 

  93. Bole C 2nd, Lessler MA. Electromyography of the genioglossus muscles in man. J Appl Physiol. 1966;21(6):1695–8.

    PubMed  Google Scholar 

  94. Cunningham DP, Basmajian JV. Electromyography of genioglossus and geniohyoid muscles during deglutition. Anat Rec. 1969;165(3):401–9.

    CAS  PubMed  Google Scholar 

  95. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.

    PubMed  Google Scholar 

  96. Spiering BA, et al. Resistance exercise biology. Sports Med. 2008;38(7):527–40.

    PubMed  Google Scholar 

  97. Häkkinen K, Alen M, Komi P. Changes in isometric force-and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand. 1985;125(4):573–85.

    PubMed  Google Scholar 

  98. Cartee GD, et al. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):1034–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang L, et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol. 2011;111(5):1335–444.

    CAS  PubMed  Google Scholar 

  100. Lysenko E, et al. Effect of combined aerobic and strength exercises on the regulation of mitochondrial biogenesis and protein synthesis and degradation in human skeletal muscle. Hum Physiol. 2016;42(6):634–44.

    CAS  Google Scholar 

  101. Granata C, et al. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016;30(10):3413–23.

    CAS  PubMed  Google Scholar 

  102. Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol. 2016;101(1):17–22.

    CAS  PubMed  Google Scholar 

  103. Schwarz NA, et al. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle. Appl Physiol Nutr Metab. 2016;41(8):856–63.

    CAS  PubMed  Google Scholar 

  104. Coffey VG, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. 2006;290(5):E849–E855855.

    CAS  PubMed  Google Scholar 

  105. Alvehus M, et al. Metabolic adaptations in skeletal muscle, adipose tissue, and whole-body oxidative capacity in response to resistance training. Eur J Appl Physiol. 2014;114(7):1463–71.

    CAS  PubMed  Google Scholar 

  106. Salvadego D, et al. Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. J Appl Physiol. 2013;114(11):1527–35.

    CAS  PubMed  Google Scholar 

  107. Tesch P, Komi P, Häkkinen K. Enzymatic adaptations consequent to long-term strength training. Int J Sports Med. 1987;8(S1):S66–S69.

    Google Scholar 

  108. Wang N, et al. Muscle fiber types of women after resistance training—quantitative ultrastructure and enzyme activity. Pflügers Arch. 1993;424(5–6):494–502.

    CAS  PubMed  Google Scholar 

  109. Porter C, et al. Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc. 2015;47(9):1922.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Horan M, Pichaud N, Ballard JW. Quantifying mitochondrial dysfunction in complex diseases of aging. J Gerontol A. 2012;67(10):1022–35.

    Google Scholar 

  111. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321–5.

    CAS  PubMed  Google Scholar 

  112. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–7.

    CAS  PubMed  Google Scholar 

  113. Karni A, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci. 1998;95(3):861–8.

    CAS  PubMed  Google Scholar 

  114. Kletzien H, Cullins MJ, Connor NP. Age-related alterations in swallowing biomechanics. Exp Gerontol. 2019;118:45–50.

    PubMed  PubMed Central  Google Scholar 

  115. Amri M, Lamkaden M, Car A. Activity of extrinsic tongue muscle during swallowing in sheep. Brain Res. 1989;503(1):141–3.

    CAS  PubMed  Google Scholar 

  116. Napadow VJ, et al. Biomechanical basis for lingual muscular deformation during swallowing. Am J Physiol Gastroint Liver Physiol. 1999;277(3):G695–G701.

    CAS  Google Scholar 

  117. Robbins J, et al. Age-related differences in pressures generated during isometric presses and swallows by healthy adults. Dysphagia. 2016;31(1):90–6.

    PubMed  Google Scholar 

  118. Krekeler BN, et al. Patient adherence to dysphagia recommendations: a systematic review. Dysphagia. 2018;33(2):173–84.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants 1F31AG059351-01, R01DC018071, R01DC008149, R01DC014358, R37CA225608. This manuscript was submitted in partial fulfillment of the requirements for the doctoral dissertation of the first author, BNK. The authors would like to acknowledge the help of Dr. John Russell during animal tissue harvest, Jared Cullen for his help in coordination of animal training, Drs. Heidi Kletzien. Tiffany Glass, and Miranda Cullins for their encouragement and support in the learning of these assays. The first author would like to thank and recognize her dissertation committee members for their valuable contributions to her training and feedback on this manuscript: Drs. Nicole Rogus-Pulia, Michelle R Ciucci, Gary Diffee, Catriona Steele, and Timothy McCulloch; and Dr. Glen Leverson for his statistical mentorship throughout her dissertation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany N. Krekeler.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krekeler, B.N., Weycker, J.M. & Connor, N.P. Effects of Tongue Exercise Frequency on Tongue Muscle Biology and Swallowing Physiology in a Rat Model. Dysphagia 35, 918–934 (2020). https://doi.org/10.1007/s00455-020-10105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-020-10105-2

Keywords

Navigation