Skip to main content
Log in

Robust Proximity Search for Balls Using Sublinear Space

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a set of n disjoint balls \(b_1, \dots , b_n\) in \(\mathrm{I\! R}^d\), we provide a data structure of near linear size that can answer \((1\pm {\varepsilon })\)-approximate kth-nearest neighbor queries on the balls in \(O(\log n + 1/{\varepsilon }^d)\) time, where k and \({\varepsilon }\) may be provided at query time. If k and \({\varepsilon }\) are provided in advance, we provide a data structure to answer such queries requiring O(n / k) space; that is, the data structure requires sublinear space if k is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our data structure and algorithm work for the more general case where the balls are interior disjoint, where we define the interior of a “point ball”, i.e., a ball of radius 0, as the point itself. This is not the usual topological definition.

  2. That is, intuitively, if the query point falls into one of the grid cells of \(\mathcal {I}\), we can answer a query in constant time.

References

  1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

    Article  Google Scholar 

  2. Arya, S., Malamatos, T.: Linear-size approximate Voronoi diagrams. In: Proceedings of the 13th ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 147–155 (2002)

  3. Arya, S., Malamatos, T., Mount, D.M.: Space–time tradeoffs for approximate spherical range counting. In: Proceedings of the 16th ACM-SIAM Symposium Discrete Algs (SODA), pp. 535–544 (2005)

  4. Arya, S., Malamatos, T., Mount, D.M.: Space–time tradeoffs for approximate nearest neighbor searching. J. Assoc. Comput. Mach. 57(1), 1–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theory Appl. 17, 135–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach. 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to \(k\)-nearest-neighbors and \(n\)-body potential fields. J. Assoc. Comput. Mach. 42, 67–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carmi, P., Dolev, S., Har-Peled, S., Katz, M.J., Segal, M.: Geographic quorum systems approximations. Algorithmica 41(4), 233–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In: Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge (2006)

    Google Scholar 

  10. de Berg, M., Haverkort, H., Thite, S., Toma, L.: Star-quadtrees and guard-quadtrees: I/O-efficient indexes for fat triangulations and low-density planar subdivisions. Comput. Geom. Theory Appl. 43, 493–513 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proceedings of the 42nd Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 94–103 (2001)

  12. Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and Monographs, vol. 173. American Mathematical Society, Boston (2011)

    MATH  Google Scholar 

  13. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. Theory Comput. 8, 321–350 (2012). Special issue in honor of Rajeev Motwani

    Article  MathSciNet  MATH  Google Scholar 

  14. Har-Peled, S., Kumar, N.: Down the rabbit hole: robust proximity search in sublinear space. SIAM J. Comput. 43(4), 1486–1511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Har-Peled, S., Kumar, N.: Robust proximity search for balls using sublinear space. In: Proceedings of the 34th Conference Foundation of Software Technology and Theoretical Computer Science (FFSTTCS), LIPIcs, vol. 29, pp. 315–326 (2014)

  16. Har-Peled, S., Kumar, N.: Approximating minimization diagrams and generalized proximity search. SIAM J. Comput. 44(4), 944–974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the 30th Annual ACM Symposium Theory Computing (STOC), pp. 604–613 (1998)

  18. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. Neur. Info. Proc. The MIT Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirman Kumar.

Additional information

A preliminary version of this paper appeared in FSTTCS 2014 [15].

Work on this paper was partially support by NSF AF awards CCF-0915984, CCF-1421231, and CCF-1217462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Har-Peled, S., Kumar, N. Robust Proximity Search for Balls Using Sublinear Space. Algorithmica 80, 279–299 (2018). https://doi.org/10.1007/s00453-016-0254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0254-4

Keywords

Navigation