Skip to main content

Advertisement

Log in

Citrobacter koseri immobilized on agarose beads for nucleoside synthesis: a potential biocatalyst for preparative applications

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The biocatalyzed synthesis of purine nucleosides and their analogs is a case widely studied due to the high pharmaceutical interest of these compounds, providing the whole-cell biocatalysts, a useful tool for this purpose. Vidarabine and fludarabine are commercial examples of expensive bioactive nucleosides that can be prepared using a microbial transglycosylation approach. Citrobacter koseri whole-cells immobilized on agarose beads proved to be an interesting option to transform this biotransformation in a preparative process. The entrapment matrix provided a useful and resistant multipurpose biocatalyst regarding its stability, mechanical strength, microbial viability and reuse. Immobilized biocatalyst retained the initial activity for up to 1 year storage and after 10 years, the biocatalyst did not show cell leaking and still exhibited residual activity. In addition, the biocatalyst could be reused in batch 68 times keeping up to 50% of the initial biocatalytic activity and for at least 124 h in a continuous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chaudhuri S, Symons JA, Deval J (2018) Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antivir Res 155:76–88

    Article  CAS  Google Scholar 

  2. De Clercq EE, Li G (2016) Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 29:695–747

    Article  Google Scholar 

  3. Lewkowicz ES, Iribarren AM (2018) Enzymatic synthesis of nucleic acid derivatives using whole cells. Enzymatic and chemical synthesis of nucleic acid derivatives, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, New Jersey

    Google Scholar 

  4. Lewkowicz ES, Iribarren AM (2006) Nucleoside phosphorylases. Curr Org Chem 10:1197–1215

    Article  CAS  Google Scholar 

  5. Lewkowicz ES, Iribarren AM (2017) Whole cell biocatalysts for the preparation of nucleosides and their derivatives. Curr Pharm Des 23:1–28

    Google Scholar 

  6. Wachtmeister J, Rother D (2016) Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol 42:169–177

    Article  CAS  Google Scholar 

  7. Jahnz U, Wittlich P, Prüsse U, Vorlop KD (2001) New matrices and bioencapsulation processes, vol 4. Springer, Dordrecht

    Google Scholar 

  8. Mikhailopulo IA, Miroshnikov AI (2010) New trends in nucleoside biotechnology. Acta Nat 2:36–58

    Article  CAS  Google Scholar 

  9. Nóbile M, Terreni M, Lewkowicz ES, Iribarren AM (2010) Aeromonas hydrophila strains as biocatalysts for transglycosylation. Biocatal Biotransfor 28:395–402

    Article  CAS  Google Scholar 

  10. Krenitsky TA, Koszalka GW, Tuttle JV (1981) Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases. Biochemistry 20:3615–3621

    Article  CAS  Google Scholar 

  11. Utagawa T (1999) Enzymatic preparation of nucleoside antibiotics. J Mol Catal B Enzym 6:215–222

    Article  CAS  Google Scholar 

  12. Medici R, Lewkowicz ES, Iribarren AM (2006) Microbial synthesis of 2,6-diaminopurine nucleosides. J Mol Catal B Enzym 39:40–44

    Article  CAS  Google Scholar 

  13. Wei X, Ding Q, Ou L, Zhang L, Wang C (2008) Two-step enzymatic synthesis of guanine arabinoside. Chin J Chem Eng 16:934–937

    Article  CAS  Google Scholar 

  14. Serra I, Ubiali D, Piškur J, Christoffersen S, Lewkowicz ES, Iribarren AM, Abertini AM, Terreni M (2013) Developing a collection of immobilized nucleoside phosphorylases for the preparation of nucleoside analogues: enzymatic synthesis of arabinosyladenine and 2ʹ,3ʹ-dideoxyinosine. ChemPlusChem 78:157–165

    Article  CAS  Google Scholar 

  15. Nobile ML, Lewkowicz ES, Iribarren AM (2012) Use of Citrobacter koseri whole cells for the production of arabinonucleosides: a larger scale approach. Proc Biochem 47:2182–2188

    Article  CAS  Google Scholar 

  16. Mutlu BR, Yeom S, Wackett LP, Aksan A (2015) Modelling and optimization of a bioremediation system utilizing silica gel encapsulated whole-cell biocatalyst. Chem Eng J 259:574–580

    Article  CAS  Google Scholar 

  17. Martínez D, Menéndez C, Echemendia FM, Pérez ER, Trujillo LE, Sobrino A, Ramírez R, Quintero Y, Hernández L (2014) Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate. Microb Cell Fact 13:87–96

    Article  CAS  Google Scholar 

  18. Kavitake D, Kandasamy S, Devi PB, Shetty PH (2018) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—a review. Food Biosci 21:34–44

    Article  CAS  Google Scholar 

  19. Zajkoska P, Rosenberg M, Heath R, Malone KJ, Stloukal R, Turner NJ, Rebroš M (2014) Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Appl Microbiol Biotechnol 93:1229–1236

    Google Scholar 

  20. Zichová M, Stratilová E, Omelková J, Vadkertiová R, Babák L, Rosenberg M (2017) Production of ethanol from waste paper using immobilized yeasts. Chem Pap 71:553–561

    Article  CAS  Google Scholar 

  21. Stepanov N, Efremenko E (2017) Immobilised cells of Pachysolen tannophilus yeast for ethanol production from crude glycerol. N Biotechnol 34:54–58

    Article  CAS  Google Scholar 

  22. Weisz PB (1973) Diffusion and chemical transformation: an interdisciplinary excursion. Science 179:433–440

    Article  CAS  Google Scholar 

  23. Bartholomew JW, Mittwer T (1952) The Gram stain. Bacteriol Rev 16:1–29

    Article  CAS  Google Scholar 

  24. Alvarez GS, Foglia ML, Copello GJ, Desimone MF, Diaz LE (2009) Effect of various parameters on viability and growth of bacteria immobilized in sol–gel-derived silica matrices. Appl Microbiol Biotechnol 82:639–646

    Article  CAS  Google Scholar 

  25. Miwa N, Kurosaki K, Yoshida Y, Kurokawa M, Saito S, Shiraki K (2005) Comparative efficacy of acyclovir and vidarabine on the replication of varicella-zoster virus. Antivir Res 65:49–55

    Article  CAS  Google Scholar 

  26. Robak P, Robak T (2013) Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat Rev 39:851–861

    Article  CAS  Google Scholar 

  27. Gandhi V, Keating MJ, Bate G, Irkpatrick P (2006) Nelarabine. Nat Rev Drug Discov 5:17–18

    Article  CAS  Google Scholar 

  28. Chresand TJ, Dale BE, Hanson SL, Gillies RJ (1988) A stirred bath technique for diffusivity measurements in cell matrices. Biotechnol Bioeng 32:1029–1063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MLN, ESL and AMI are research members of CONICET, Argentina. This work was supported by Universidad Nacional de Quilmes (Grant number PUNQ 1400/15), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías L. Nóbile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nóbile, M.L., Iribarren, A.M. & Lewkowicz, E.S. Citrobacter koseri immobilized on agarose beads for nucleoside synthesis: a potential biocatalyst for preparative applications. Bioprocess Biosyst Eng 43, 637–644 (2020). https://doi.org/10.1007/s00449-019-02261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02261-z

Keywords

Navigation