Skip to main content

Advertisement

Log in

Implementation and analysis of temperature control strategies for outdoor photobiological hydrogen production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

For outdoor photobiological hydrogen production, the effective control of temperature in photobioreactors is a challenge. In this work, an internal cooling system for outdoor tubular photobioreactors was designed, built, and tested. The temperatures in the reactors with bacteria were consistently higher than those without bacteria, and were also strongly influenced by solar irradiation and ambient air temperature. The cooling protocol applied successfully kept the reactor temperatures below the threshold limit (38 °C) required for the bioprocess and provided a uniform distribution of temperature along the reactor tube length. The biomass growth and hydrogen production were similar in the reactors cooled co-currently and counter-currently. The biomass growth rate was 0.1 l/h, the maximum hydrogen production rate was 1.28 mol/m3/h, and the overall hydrogen yield obtained was 20 %. The change in the biomass was fitted using the logistic model while cumulative hydrogen production was fitted using the modified Gompertz equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koku H, Eroglu I, Gündüz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 2:1325–1329

    Google Scholar 

  2. Kars G, Gündüz U (2010) Towards a super H2 producer: improvements in photofermentative biohydrogen production by genetic manipulations. Int J Hydrogen Energy 35:6646–6656

    Article  CAS  Google Scholar 

  3. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (2006) The Prokaryotes. Proteobacteria Alpha and Beta Subclasses, vol 5. Springer, New York

    Google Scholar 

  4. Özgür E, Uyar B, Oztürk Y, Yucel M, Gündüz U, Eroğlu I (2010) Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recycl 54:310–314

    Article  Google Scholar 

  5. Uyar B (2008) Hydrogen production by microorganisms in solar bioreactor. PhD Thesis, Middle East Technical University, Ankara

  6. Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Leeuwenhoek 55:291–296

    Article  CAS  Google Scholar 

  7. Gökce A, Oztürk Y, Cakar ZP, Yucel M (2012) Temperature resistant mutants of Rhodobacter capsulatus generated by a directed evolution approach and effects of temperature resistance on hydrogen production. Int J Hydrogen Energy 37:16466–16472

    Article  Google Scholar 

  8. Sevinç P, Gündüz U, Eroglu I, Yücel M (2012) Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus. Int J of Hydrogen Energy 37:16430–16436

    Article  Google Scholar 

  9. Jouanneau Y, Wong B, Vignais PM (1985) Stimulation by light of nitrogenase synthesis in cells of Rhodopseudomonas capsulate growing in N-limited continuous cultures. Biochim Biophys Acta 808:149–155

    Article  CAS  Google Scholar 

  10. Androga DD, Sevinç P, Koku H, Yücel M, Gündüz U, Eroglu I (2014) Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM1710. Int J Hydrogen Energy 39(6):2472–2480

    Article  CAS  Google Scholar 

  11. Gebicki J, Modigell M, Schumacher M, van der Bourg J, Roebroeck E (2010) Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus. J Clean Prod 18:S36–S42

    Article  CAS  Google Scholar 

  12. Özkan E, Uyar B, Özgür E, Yücel M, Eroglu I, Gündüz U (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrogen Energy 37(2):2044–2049

    Article  Google Scholar 

  13. Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012) Biohydrogen production by Rhodobacter capsulatus Hup-mutant in pilot solar tubular photobioreactor. Int J Hydrogen Energy 37:16437–16445

    Article  CAS  Google Scholar 

  14. Uyar B, Kapucu N (2015) Passive temperature control of an outdoor photobioreactor by phase change materials. J Chem Technol Biot 90(5):915–920

    Article  CAS  Google Scholar 

  15. Otsuki T, Uchiyama S, Fujiki K, Fukunaga S (1998) Hydrogen production by a floating-type photobioreactor. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 369–374

    Google Scholar 

  16. Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249

    Article  CAS  Google Scholar 

  17. Adessi A, Torzillo G, Baccetti E, De Philippis R (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int J Hydrogen Energy 37:8840–8849

    Article  CAS  Google Scholar 

  18. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  CAS  Google Scholar 

  19. Camacho FG, Rodriguez JJG, Mirona AS, Belarbia EH, Chisti Y, Grima EM (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 4:936–944

    Article  Google Scholar 

  20. Androga DD, Özgür E, Gündüz U, Yücel M, Eroglu I (2011) Factors affecting the long-term stability of biomass and hydrogen productivity in outdoor photofermentation. Int J Hydrogen Energy 36:11369–11378

    Article  CAS  Google Scholar 

  21. Avcıoğlu SG, Özgür E, Eroglu I, Yücel M, Gündüz U (2011) Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. Int J Hydrogen Energy 36:11360–11368

    Article  Google Scholar 

  22. Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  23. Haltrin VI (2006) Absorption and scattering of light in natural waters. In: Kokhanovsky AA (ed) Light scattering reviews—single and multiple light scattering. Springer Praxis Books, Berlin, pp 445–486

    Google Scholar 

  24. Uyar B, Eroglu I, Yücel M, Gündüz U, Türker L (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrogen Energy 32:4670–4677

    Article  CAS  Google Scholar 

  25. Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrogen Energy 39:3127–3141

    Article  CAS  Google Scholar 

  26. Sanchez-Torres V, Yusoff MZM, Nakano C, Maeda T, Ogawa HI, Wood TK (2013) Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrogen Energy 38:3905–3912

    Article  CAS  Google Scholar 

  27. Öztürk Y, Yücel M, Daldal F, Mandacı S, Gündüz U, Türker L et al (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrogen Energy 31:1545–1552

    Article  Google Scholar 

  28. Uyar B (2016) Bioreactor design for photofermentative hydrogen production. Bioprocess Biosyst Eng. doi:10.1007/s00449-016-1614-9

    Google Scholar 

  29. Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, New York, pp 267–273

    Chapter  Google Scholar 

  30. Incropera FP, Dewitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, New Jersey

    Google Scholar 

  31. Pellerin HB, Gest H (1983) Diagnostic features of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Curr Microbiol 9:339–344

    Article  CAS  Google Scholar 

  32. Hoekema S, Douma RD, Janssen M, Tramper J, Wijffels RH (2006) Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol Bioeng 95(4):613–626

    Article  CAS  Google Scholar 

  33. Goetz V, Le Borgne F, Pruvost J, Plantard G, Legrand J (2011) A generic temperature model for solar photobioreactors. Chem Eng J 175(15):443–449

    Article  CAS  Google Scholar 

  34. Androga DD, Özgür E, Gündüz U, Yücel M, Eroglu I (2011) Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int J Hydrogen Energy 36(24):15583–15594

    Article  CAS  Google Scholar 

  35. Nath K, Das D (2009) Effect of light Intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. Int J Hydrogen Energy 34(17):7497–7501

    Article  CAS  Google Scholar 

  36. Segers L, Verstraete W (1983) Conversion of organic acids to hydrogen by Rhodospirillaceae grown with glutamate or dinitrogen as nitrogen source. Biotechnol Bioeng 25(12):2843–2853

    Article  CAS  Google Scholar 

  37. Haselkorn R, Lapidus A, Kogan Y, Vlcek C, Paces J, Paces V et al (2001) The Rhodobacter capsulatus genome. Photosynth Res 70:43–52

    Article  CAS  Google Scholar 

  38. Boran E, Özgür E, van der Burg J, Yücel M, Gündüz U, Eroglu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35

    Article  CAS  Google Scholar 

  39. Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012) Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. Int J Hydrogen Energy 31:150–157

    CAS  Google Scholar 

  40. Eroglu I, Tabanoglu A, Gündüz U, Eroglu E, Yücel M (2008) Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrogen Energy 33:531–541

    Article  CAS  Google Scholar 

  41. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208

    Article  CAS  Google Scholar 

  42. Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    Article  CAS  Google Scholar 

  43. Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS (2008) Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J Hydrogen Energy 33:6886–6895

    Article  CAS  Google Scholar 

  44. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  Google Scholar 

  45. Li RY, Fang HHP (2009) Heterotrophic photo fermentative hydrogen production. Crit Rev Environ Sci Technol 39(12):1081–1108

    Article  CAS  Google Scholar 

  46. Eroglu E, Eroglu I, Gündüz U, Türker L, Yücel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrogen Energy 31:1527–1535

    Article  CAS  Google Scholar 

  47. Seifert K, Waligorska M, Laniecki M (2010) Hydrogen generation in photobiological process from dairy wastewater. Int J Hydrogen Energy 35:9624–9629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the METU BAP-07-02-2012-002 project. Dominic Deo Androga acknowledges Emine Kayahan for helping with the taking of measurements during the experiments. The Scientific and Technological Research Council of Turkey (TUBITAK-BIDEB) is acknowledged for providing financial support through the PhD Fellowships for Foreign Citizens (Code 2215) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basar Uyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Androga, D.D., Uyar, B., Koku, H. et al. Implementation and analysis of temperature control strategies for outdoor photobiological hydrogen production. Bioprocess Biosyst Eng 39, 1913–1921 (2016). https://doi.org/10.1007/s00449-016-1665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1665-y

Keywords

Navigation