Skip to main content
Log in

Enzymatic selective synthesis of 1,3-DAG based on deep eutectic solvent acting as substrate and solvent

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, enzymatic selective esterification of oleic acid with glycerol based on deep eutectic solvent acting as substrate and solvent was studied. As choline chloride (ChCl) or betaine can effectively change the chemical reaction characteristics of glycerol when they are mixed with a certain molar ratio of glycerol, several factors crucial to the lipase catalytic esterification of glycerol with oleic acid was investigated. Results showed that, betaine had more moderate effects than ChCl on the lipase, and water content had an important influence of the esterification and the enzyme selectivity. Significant changes of the glyceride compositions and enzyme selectivity were found in ChCl adding system compared with pure glycerol system; optimum accumulation of DAG especially 1,3-DAG because of the eutectic effect of ChCl was found in this system. Furthermore, in a model 1,3-DAG esterification synthesis system catalyzed by Novozym 435, high content (42.9 mol%) of the 1,3-DAG could be obtained in ChCl adding system within 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  2. de Maria PD, Maugeri Z (2011) Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Curr Opin Chem Biol 15:220–225

    Article  Google Scholar 

  3. Ruß C, König B (2012) Low melting mixtures in organic synthesis—an alternative to ionic liquids? Green Chem 14:2969

    Article  Google Scholar 

  4. Zhang Q, De Vigier KO, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  Google Scholar 

  5. Francisco M, van den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed Engl 52:3074–3085

    Article  CAS  Google Scholar 

  6. Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 10:1235–1237

    Article  Google Scholar 

  7. Lindberg D, de la Fuente Revenga M, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147:169–171

    Article  CAS  Google Scholar 

  8. Monhemi H, Housaindokht MR, Moosavi-Movahedi AA, Bozorgmehr MR (2014) How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea : choline chloride deep eutectic solvent. Phys Chem Chem Phys: PCCP 16:14882–14893

    Article  CAS  Google Scholar 

  9. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13:82

    Article  CAS  Google Scholar 

  10. Gutierrez MC, Ferrer ML, Yuste L, Rojo F, del Monte R (2010) Bacteria incorporation in deep-eutectic solvents through freeze-drying. Angew Chem Int Ed Engl 49:2158–2162

    Article  CAS  Google Scholar 

  11. Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IW, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705

    Article  CAS  Google Scholar 

  12. Hyman AA, Simons K (2012) Cell biology. Beyond oil and water-phase transitions in cells. Science 337:1047–1049

    Article  CAS  Google Scholar 

  13. López-Fandiño R, Gill I, Vulfson EN (1994) Protease-catalyzed synthesis of oligopeptides in heterogenous substrate mixtures. Biotechnol Bioeng 43:1024–1030

    Article  Google Scholar 

  14. Gill I, Vulfson EN (1993) Enzymic synthesis of short peptides in heterogeneous mixtures of substrates. J Am Chem Soc 115:3348–3349

    Article  CAS  Google Scholar 

  15. Osaki N, Meguro S, Yajima N, Matsuo N, Tokimitsu I, Shimasaki H (2005) Metabolites of dietary triacylglycerol and diacylglycerol during the digestion process in rats. Lipids 40:281–286

    Article  CAS  Google Scholar 

  16. Rudkowska I, Roynette CE, Demonty I, Vanstone CA, Jew S, Jones PJ (2005) Diacylglycerol: efficacy and mechanism of action of an anti-obesity agent. Obes Res 13:1864–1876

    Article  CAS  Google Scholar 

  17. Saito S, Hernandez-Ono A, Ginsberg HN (2007) Dietary 1,3-diacylglycerol protects against diet-induced obesity and insulin resistance. Metab Clin Exp 56:1566–1575

    Article  CAS  Google Scholar 

  18. Guo Z, Sun Y (2007) Solvent-free production of 1,3-diglyceride of CLA: strategy consideration and protocol design. Food Chem 100:1076–1084

    Article  CAS  Google Scholar 

  19. Wang W-F, Li T, Qin X-L, Ning Z-X, Yang B, Wang Y-H (2012) Production of lipase SMG1 and its application in synthesizing diacylglyecrol. J Mol Catal B Enzym 77:87–91

    Article  CAS  Google Scholar 

  20. Liu N, Wang Y, Zhao Q, Zhang Q, Zhao M (2011) Fast synthesis of 1,3-DAG by Lecitase® Ultra-catalyzed esterification in solvent-free system. Eur J Lipid Sci Tech EJLST 113:973–979

    Article  CAS  Google Scholar 

  21. Liao HF, Tsai WC, Chang SW, Shieh CJ (2003) Application of solvent engineering to optimize lipase-catalyzed 1,3-diglyacylcerols by mixture response surface methodology. Biotechnol Lett 25:1857–1861

    Article  CAS  Google Scholar 

  22. Duan Z-Q, Du W, Liu D-H (2010) Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochem 45:1923–1927

    Article  CAS  Google Scholar 

  23. Kahveci D, Guo Z, Özçelik B, Xu X (2010) Optimisation of enzymatic synthesis of diacylglycerols in binary medium systems containing ionic liquids. Food Chem 119:880–885

    Article  CAS  Google Scholar 

  24. Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34:3–15

    Article  CAS  Google Scholar 

  25. Lever M, Slow S, George PM, Chambers ST (2012) Betaine excretion correlates with plasma homocysteine when plasma lipids are elevated. Clin Biochem 45:154–156

    Article  CAS  Google Scholar 

  26. Gutierrez MC, Ferrer ML, MateoF CR, del Monte F (2009) Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25:5509–5515

    Article  CAS  Google Scholar 

  27. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Article  CAS  Google Scholar 

  28. Kumar N, Kishore N (2014) Protein stabilization and counteraction of denaturing effect of urea by glycine betaine. Biophys Chem 189:16–24

    Article  CAS  Google Scholar 

  29. Bellot JC, Choisnard L, Castillo E, Marty A (2001) Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification. Enzyme Microb Technol 28:362–369

    Article  CAS  Google Scholar 

  30. Zhao H, Baker GA, Holmes S (2011) Protease activation in glycerol-based deep eutectic solvents. J Mol Catal B Enzym 72:163–167

    Article  CAS  Google Scholar 

  31. Durand E, Lecomte J, Baréa B, Villeneuve P (2014) Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride. Eur J Lipid Sci Tech EJLST 116:16–23

    Article  CAS  Google Scholar 

  32. Piyatheerawong W, Iwasaki Y, Xu XB, Yamane T (2004) Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases. J Mol Catal B Enzym 28:19–24

    Article  CAS  Google Scholar 

  33. Zhao H, Baker GA, Holmes S (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9:1908–1916

    Article  CAS  Google Scholar 

  34. Yesiloglu Y, Kilic I (2004) Lipase-catalyzed esterification of glycerol and oleic acid. J Am Oil Chem Soc 81:281–284

    Article  CAS  Google Scholar 

  35. Eckstein M, Wasserscheid P, Kragl U (2002) Enhanced enantioselectivity of lipase from Pseudomonas sp at high temperatures and fixed water activity in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnol Lett 24:763–767

    Article  CAS  Google Scholar 

  36. Kim MJ, Choi MY, Lee JK, Ahn Y (2003) Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity. J Mol Catal B Enzym 26:115–118

    Article  Google Scholar 

  37. Hernandez-Fernandez FJ, de los Rios AP, Rubio M, Gomez D, Villora G (2007) Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. J Chem Technol Biotechnol 82:882–887

    Article  CAS  Google Scholar 

  38. Li W, Du W, Li Q, Li R-W, Liu D (2010) Dependence on the properties of organic solvent: study on acyl migration kinetics of partial glycerides. Bioresour Technol 101:5737–5742

    Article  CAS  Google Scholar 

  39. Xu XB (2000) Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Technol EJLST 102:287–303

    Article  CAS  Google Scholar 

  40. Watanabe T, Shimizu M, Sugiura M (2003) Optimization of reaction conditions for the production of DAG using immobilized 1, 3-regiospecific lipase lipozyme RM IM. J Am Oil Chem Soc 80:1201–1207

    Article  CAS  Google Scholar 

  41. Tripathi V, Trivedi R, Singh R (2006) Lipase-catalyzed synthesis of diacylglycerol and monoacylglycerol from unsaturated fatty acid in organic solvent system. J Oleo Sci 55:65–69

    Article  CAS  Google Scholar 

  42. Rosu R, Yasui M, Iwasaki Y, Yamane T (1999) Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. J Am Oil Chem Soc 76:839–843

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by Program for National Science Funds (21376098), the Fundamental Research Funds for the Central Universities (2013ZZ0066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hua Wang.

Additional information

Chao-Xi Zeng and Sui-Jian Qi have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, CX., Qi, SJ., Xin, RP. et al. Enzymatic selective synthesis of 1,3-DAG based on deep eutectic solvent acting as substrate and solvent. Bioprocess Biosyst Eng 38, 2053–2061 (2015). https://doi.org/10.1007/s00449-015-1445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1445-0

Keywords

Navigation