Skip to main content

Advertisement

Log in

In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Constraining the age of young lavas, which generally fall outside the effective range of traditional geochronology methods, remains a key challenge in volcanology, limiting the development of high-resolution eruption chronologies. We present an in situ cosmogenic 3He and 36Cl surface-exposure chronology, alongside new minimum-limiting 14C ages, documenting young eruptions at five sites in the Western Cordillera, southern Peru. Four 3He-dated lavas on the Nevado Coropuna volcanic complex (hitherto thought to be dormant) indicate that the central dome cluster is young and potentially active; two Holocene lavas on the easternmost dome are the youngest directly dated lavas in Peru to date. East of Coropuna, lava domes and block-lava flows represent the most extensive output to date of Nevado Sabancaya, one of Peru’s most active volcanoes. Two 3He measurements confirm the Holocene age of these deposits and expand the chronology for one of the youngest major lava fields in Peru. 36Cl surface-exposure ages from the Purupurini dome cluster and Nevado Casiri document middle-late-Holocene episodes of effusive activity, while basal 14C ages from a lava-dammed wetland constrain an effusive eruption at Mina Arcata, north of Coropuna, to the late-glacial period. These new data advance the recent Western Cordillera volcanic record whilst demonstrating both the considerable potential and fundamental limitations of cosmogenic surface-exposure methods for such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcalá J, Estremera DP, Zamorano JJ, Vázquez-Selem L (2011) Last glacial maximum and deglaciation of Ampato volcanic complex, Southern Peru. Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el. Estudio del Cuaternario 25:121–136

    Google Scholar 

  • Alcalá Reygosa J, Palacios D, Zamorano Orozco JJ (2016) Geomorphology of the Ampato volcanic complex (southern Peru). J Maps 12:1160–1169

    Google Scholar 

  • Alcalá-Reygosa J, Arce JL, Schimmelpfennig I, Salinas EM, Rodríguez MC, Léanni L, Aumaître G, Bourlès D, Keddadouche K, Team ASTER (2018) Revisiting the age of the Jumento volcano, Chichinautzin volcanic field (Central Mexico), using in situ-produced cosmogenic 10Be. J Volcan Geotherm Res 366:112–119

    Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the central Andes. Ann Rev Earth Plan Sci 25:139–174

    Google Scholar 

  • Andronico D, Lodato L (2005) Effusive activity at Mount Etna volcano (Italy) during the 20th century: a contribution to volcanic hazard assessment. Nat Haz 36:407–443

    Google Scholar 

  • Baker MCW (1981) The nature and distribution of upper cenozoic ignimbrite centres in the Central Andes. J Volcanol Geotherm Res 11:293–315

    Google Scholar 

  • Blard PH, Lavé J, Sylvestre F, Placzek CJ, Claude C, Galy V, Condom T, Tibari B (2013) Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20°S): implications for the local last glacial maximum. Earth Plan Sci Lett 377-378:260–275

    Google Scholar 

  • Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J (2016) Geological calibration of spallation production rates in the CRONUS-earth project. Quat Geochronol 31:188–198

    Google Scholar 

  • Bromley GRM, Schaefer JM, Winckler G, Hall BL, Todd CE, Rademaker KM (2009) Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quat Sci Rev 28:2514–2526

    Google Scholar 

  • Bromley GR, Hall BL, Rademaker KM, Todd CE, Racoviteanu AE (2011a) Late Pleistocene snowline fluctuations at Nevado Coropuna (15 S), southern Peruvian Andes. J Quat Sci 26:305–317

    Google Scholar 

  • Bromley GRM, Hall BL, Schaefer JM, Winckler G, Todd CE, Rademaker KM (2011b) Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. J Quat Sci 26:37–43

    Google Scholar 

  • Bulmer M, Johnston A, Engle F (1999) Analysis of Sabancaya volcano, southern Peru using Radarsat and Landsat TM data. Application Development and Research Opportunity (ADRO)

  • Burkett B (2008) Andean volcanism: Nevado Hualca Hualca volcano, Southern Peru, and El Reventador Volcano, Ecuador. Unpublished M.S. thesis, SUNY Buffalo

  • Clapperton CM (1993) Quaternary geology and geomorphology of South America. Elsevier. 779 pp

  • Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2014) Reply to comment on: “Cobeñas, G., Thouret, J.-C., Bonadonna, C., Boivin, P., 2012. The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications”. J Volcanol Geothermal Res 275C:103–113

  • Cooper KM, Kent AJ (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483

    Google Scholar 

  • Delacour A, Gerbe MC, Thouret JC, Wörner G, Paquereau-Lebti P (2007) Magma evolution of quaternary minor volcanic centres in southern Peru, Central Andes. Bull Volcanol 69:581–608

    Google Scholar 

  • Dorbath C (1996) Velocity structure of the Andes of central Peru from locally recorded earthquakes. Geophys Res Lett 23:205–208

    Google Scholar 

  • Forget M, Thouret JC, Kuentz A, Fontugne M (2008) Héritages glaciaires, périglaciaires et évolution récente: le cas du Nevado Coropuna (Andes centrales, sud du Pérou). Géomorphologie: Relief, Processus, Environnement 2:113–132

    Google Scholar 

  • Francis PW, Hawkesworth CJ (1994) Late Cenozoic rates of magmatic activity in the central Andes and their relationship to continental crust formation and thickening. J Geol Soc Lond 151:845–854

    Google Scholar 

  • Gehrels MJ, Lowe DJ, Hazell ZJ, Newnham RM (2006) A continuous 5300-yr Holocene cryptotephrostratigraphic record from northern New Zealand and implications for tephrochronology and volcanic hazard assessment. The Holocene 16:173–187

    Google Scholar 

  • Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bull Volcanol 66:541–561

    Google Scholar 

  • Gunnell Y, Thouret JC, Brichau S, Carter A, Gallagher K (2010) Low-temperature thermochronology in the Peruvian Central Andes: implications for long-term continental denudation, timing of plateau uplift, canyon incision and lithosphere dynamics. J Geol Soc 167:803–815

    Google Scholar 

  • Hall K (1982) Rapid deglaciation as an initiator of volcanic activity: an hypothesis. Earth Surface Proc Land 7:45–51

    Google Scholar 

  • Harðarson BS, Fitton JG (1991) Increased mantle melt beneath Snaefellsjökull volcano during Late Pleistocene deglaciation. Nature 353:62–64

    Google Scholar 

  • Herreros J, Moreno I, Taupin JD, Ginot P, Patris N, De Angelis M, Ledru MP, Delachaux F, Schotterer U (2009) Environmental records from temperate glacier ice on Nevado Coropuna saddle, southern Peru. Adv Geosci 7:1–8

    Google Scholar 

  • Hooper A, Ófeigsson B, Sigmundsson F, Lund B, Einarsson P, Geirsson H, Sturkell E (2011) Increased capture of magma in the crust promoted by ice-cap retreat in Iceland. Nat Geosci 4:783–786

    Google Scholar 

  • Hora JM, Singer BS, Wörner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean central volcanic zone: 40Ar/39Ar constraints from Volcán Parinacota, Chile. GSA Bull 119:343–362

    Google Scholar 

  • Huaman-Rodrigo D, Chorowicz J, Deffontaines B, Guillande R, Rudant JP (1993) Cadre structural et risques géologiques étudiés à l’aide de l’imagerie spatiale: la région du Colca (Andes du sud Pérou). Bull Société Géologique France 164:807–818

    Google Scholar 

  • Huybers P, Langmuir C (2009) Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Plan Sci Lett 286:479–491

    Google Scholar 

  • James DE (1971) Plate tectonic model for the evolution of the Central Andes. Geol Soc Am Bull 82:3325–3346

    Google Scholar 

  • Juvigné E, Thouret JC, Gilot E, Gourgaud A, Graf K, Legros F, Uribe M (1997) Etude téphrostratigraphique et bioclimatique du Tardiglaciaire et de l’Holocène de la Laguna Salinas, Pérou méridional. Géographie Phys Quat 51:221–233

    Google Scholar 

  • Juvigné E, Thouret JC, Loutsch I, Lamadon S, Frechen M, Fontugne M, Rivera M, Da Vila J, Mariño J (2008) Retombées volcaniques dans des tourbieres et lacs autour du massif des Nevados Ampato et Sabancaya (Pérou Méridional, Andes Centrales). Quaternaire 19:157–173

    Google Scholar 

  • Kelly MA, Lowell TV, Applegate PJ, Phillips FM, Schaefer JM, Smith CA, Kim H, Leonard KC, Hudson AM (2015) A locally calibrated, late glacial 10Be production rate from a low-latitude, high-altitude site in the Peruvian Andes. Quat Geochron 26:70–85

    Google Scholar 

  • Kochtitzky WH, Edwards BR, Enderlin EM, Marino J, Marinque N (2018) Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru. J Glaciol 64:175–184

    Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Plan Sci Lett 104:424–439

    Google Scholar 

  • Lamadon S (1999) Fluctuations glaciaires et téphrostratigraphie dans les montagnes intertropicales : une revue et application dans les Andes du Sud Pérou (massifs des Nevados Ampato et Coropuna). Mémoire de DEA (non publié), Université Blaise Pascal, 180 p

  • Lentfer C, Torrence R (2007) Holocene volcanic activity, vegetation succession, and ancient human land use: unraveling the interations on Garua Island, Papua New Guinea. Rev Palaeobot Palynol 143:83–105

    Google Scholar 

  • Lifton N, Sato T, Dunai TJ (2014) Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Plan Sci Lett 386:149–160

    Google Scholar 

  • Maclennan J, Jull M, McKenzie D, Slater L, Grönvold K (2002) The link between volcanism and deglaciation in Iceland. Geochem Geophys Geosyst 3:1–25

    Google Scholar 

  • Mark BG, Seltzer GO (2005) Glacier recession in the Peruvian Andes: Climatic forcing, hydrologic impact and comparative rates over time. In Global Change and Mountain Regions (pp. 205–214). Springer Netherlands

  • Marrero SM, Philips FM, Caffee MW, Gosse JC (2016) CRONUS-earth cosmogenic 36Cl calibration. Quat Geochron 31:199–219

    Google Scholar 

  • Martin LCP, Blard PH, Balco G, Lavé J, Delunel R, Lifton N, Laurent V (2017) The CREp program and the ICE-D production rate calibration database: a fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat Geochron 38:25–49

    Google Scholar 

  • Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. GSA Bull 121:1666–1677

    Google Scholar 

  • Nowell DAG, Jones MC, Pyle DM (2006) Episodic quaternary volcanism in France and Germany. J Quat Sci 21:645–675

    Google Scholar 

  • Pagli C, Sigvaldson F (2008) Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajökull ice cap, Iceland. Geophys Res Lett 35:L09304. https://doi.org/10.1029/2008GL033510

    Article  Google Scholar 

  • Ramsey CB (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Google Scholar 

  • Samaniego P, Barba D, Robin C, Fornari M, Bernard B (2012) Eruptive history of Chimborazo volcano (Ecuador): a large, ice-capped and hazardous compound volcano in the Northern Andes. J Volcanol Geotherm Res 221:33–51

    Google Scholar 

  • Samaniego P, Rivera M, Mariño J, Guillou H, Liorzou C, Zerathe S, Delgado R, Valderrama P, Scao V (2016) The eruptive chronology of the Ampato–Sabancaya volcanic complex (Southern Peru). J Volcanol Geotherm Res 323:110–128

    Google Scholar 

  • Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard PH, Bourlès D, Burnard P, Williams A (2009) Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochron 4: 441–461

    Google Scholar 

  • Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard PH, Burnard P, Bourlès D, Finkel R, Ammon K, Dunai T (2011) Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina). Geochim Cosmochim Acta 75:2611–2632

    Google Scholar 

  • Schimmelpfennig I, Schaefer J, Putnam A, Koffman T, Benedetti L, Ivy-Ochs S, ASTER Team, Schlüchter C (2014) 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J Quat Sci 29:407–413

    Google Scholar 

  • Siebe C, Arana-Salinas L, Abrams M (2005) Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chichinautzin, México. J Volcanol Geotherm Res 141:225–243

    Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Revista Geol Chile 31:161–206

    Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105(B10):23753–23759

    Google Scholar 

  • Thouret JC, Cantagrel JM, Salinas R, Murcia A (1990) Quaternary eruptive history of Nevado del Ruiz (Colombia). J Volcanol Geotherm Res 41:225–251

    Google Scholar 

  • Thouret JC, Guillande R, Huaman D, Gourgaud A, Salas G, Chorowicz J (1994) L’activité actuelle du Nevado Sabancaya (Sud Pérou): reconnaissance géologique et satellitaire, évaluation et cartographie des menaces volcaniques. Bull Soc Géol France 165:49–63

    Google Scholar 

  • Thouret JC, Cantagrel JM, Robin C, Murcia A, Salinas R, Cepeda H (1995a) Quaternary eruptive history and hazard-zone model at Nevado del Tolima and Cerro Machin volcanoes, Colombia. J Volcanol Geotherm Res 66:397–426

    Google Scholar 

  • Thouret JC, Gourgaud A, Uribe M, Rodriguez A, Guillande R, Salas G (1995b) Geomorphological and geological survey, and SPOT remote sensing of the current activity of Nevado Sabancaya stratovolcano (Peru): assessment for hazard-zone mapping. Zeit Geomorph 39(4):515–535

    Google Scholar 

  • Thouret JC, Finizola A, Fornari M, Legeley-Padovani A, Suni J, Frechen M (2001a) Geology of El Misti volcano nearby the city of Arequipa, Peru. GSA Bull 113:1593−1610

    Google Scholar 

  • Thouret JC, Juvigné E, Loutsch I, Chavez Chavez JA (2001b) Historic volcanic activity and human sacrifices by the Incas in Southern Peru. In: Juvigné E, Raynal J-P (eds) Tephras: chronology, archaeology. Dossiers de 14Archéo-Logis, pp 219–226

    Google Scholar 

  • Thouret JC, Juvigne E, Mariño J, Moscol M, Legeley-Padovani A, Loutsch I, Davila J, Lamadon S, Rivera M (2002) Late Pleistocene and Holocene tephro-stratigraphy and chronology in southern Peru. Bol Soc Geol Perú 93:45–61

    Google Scholar 

  • Thouret JC, Davila J, Juvigné E, Lee A, Legeley-Padovani A, Loutsch I, Majavesi M, Jersy M, Moscol M (2003) Late Pleistocene and Holocene tephrostratigraphy and chronology in southern Peru. XVI INQUA Congress, pp 23–30

  • Thouret JC, Rivera M, Wörner G, Gerbe MC, Finizola A, Fornari M, Gonzales K (2005) Ubinas: the evolution of the historically most active volcano in southern Peru. Bull Volcanol 67:557–589

    Google Scholar 

  • Thouret JC, Jicha B, Paquette JL, Cubukcu E (2016) A 25 Myr chronostratigraphy of ignimbrites in South Peru. Implications for the volcanic history of the Central Andes. J Geol Soc 173:734–756

    Google Scholar 

  • Thouret JC, Gunnell Y, Jicha B, Paquette JL, Braucher R (2017) Evolution and river incision history of the west Central Andes based on ignimbrites, landslide study and surface exposure dating in SW Peru. Geomorph 298:1–19

    Google Scholar 

  • Úbeda J, Palacios D, Vázquez-Selem L (2012) La evolución glaciovolcánica del nevado Coropuna desde la transición del Pleistoceno al Holoceno. In: XVI Congreso Peruano de Geología. Soc Geol Perú, Lima

    Google Scholar 

  • Úbeda J, Bonshoms M, Iparraguirre J, Sáez L, De la Fuente R, Janssen L, Concha R, Vásquez P, Masías P (2018) Prospecting glacial ages and Paleoclimatic reconstructions Northeastward of Nevado Coropuna (16°S, 73°W, 6377 m), arid tropical Andes. Geosci 8:307

    Google Scholar 

  • Venturelli G, Fragipane M, Weibel M, Antiga D (1978) Trace element distribution in the Cainozoic lavas of Nevado Coropuna and Andagua Valley, Central Andes of southern Peru. Bull Volcanol 41–43:213–228

    Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Google Scholar 

  • Weibel VM, Frangipane-Gysel M, Hunziker J (1978) Ein Beitrag zur Vulkanologie Süd-Perus. Geol Rundsch 67:243–252

    Google Scholar 

  • Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18-22°S): implications for magmatism and tectonic evolution of the central Andes. Revista Geol Chile 27:205–240

    Google Scholar 

  • Wörner G, Mamani M, Blum-Oeste M (2018) Magmatism in the Central Andes. Elements 14(4):237–244

    Google Scholar 

Download references

Acknowledgements

We thank Claire Todd and Matthew Hegland (Pacific Lutheran University), Rigoberto Aguilar (OVI Ingemmet, Arequipa), and Peter Strand (UMaine) for field and sampling assistance. We also thank Mark Kurz and Josh Curtice, Woods Hole Oceanographic Institute, for input during sample preparation and helium measurement. Pierre Boivin, Claire Fonquernie, Mhammed Benbakkar, and Jean-Luc Davidal provided analytical laboratory assistance. G. Bromley acknowledges support from NSF grant EAR-10-03427 and the Churchill Exploration Foundation (UMaine). The ASTER AMS national facility (CEREGE, Aix en Provence) is supported by the INSU/CNRS, the ANR through the ‘Projets thématiques d’excellence’ programme for the ‘Equipements d’excellence’ ASTER-CEREGE action and IRD. Finally, we extend our thanks to Jorge Vasquez, an anonymous reviewer, Associate Editor Hannah Dietterich and Editor Jacopo Taddeucci for their thoughtful and constructive comments on earlier versions of this manuscript. CLERVOLC and I-SITE contribution 356. Consortium: Georges Aumaître, Didier Bourlès, Karim Keddadouche

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon R. M. Bromley.

Additional information

Editorial responsibility: H. Dietterich; Deputy Executive Editor: J. Tadeucci

Electronic supplementary material

ESM 1

(PDF 991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bromley, G.R.M., Thouret, JC., Schimmelpfennig, I. et al. In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru. Bull Volcanol 81, 64 (2019). https://doi.org/10.1007/s00445-019-1325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1325-6

Keywords

Navigation