Skip to main content
Log in

Foraging strategies of individual silky pocket mice over a boom–bust cycle in a stochastic dryland ecosystem

  • Population ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Small mammals use multiple foraging strategies to compensate for fluctuating resource quality in stochastic environments. These strategies may lead to increased dietary overlap when competition for resources is strong. To quantify temporal contributions of high (C3) versus low quality (C4) resources in diets of silky pocket mice (Perognathus flavus), we used stable carbon isotope (δ13C) analysis of 1391 plasma samples collected over 2 years. Of these, 695 samples were from 170 individuals sampled ≥ 3 times across seasons or years, allowing us to assess changes in dietary breadth at the population and individual levels across a boom–bust population cycle. In 2014, the P. flavus population increased to 412 captures compared to 8 captures in prior and subsequent years, while populations of co-occurring small mammals remained stable. As intraspecific competition increased, the population-wide dietary niche of P. flavus did not change, but individual specialization increased significantly. During this period, ~ 27% (41/151) of individuals sampled specialized on C3 resources, which were abundant during the spring and previous fall seasons. Most of the remaining individuals were C3–C4 generalists (64%) (96/151), and only 9% (14/151) specialized on C4 resources. In 2015, P. flavus population density and resource availability declined, individual dietary breadth expanded (84% generalists), no C3 specialists were found, and specialization on C4 resources increased (16%). Our results demonstrate a high degree of inter-individual plasticity in P. flavus foraging strategies, which has implications for how this species will respond to environmental change that is predicted to decrease C3 resources in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarssen LW, Taylor RD (1992) Fecundity allocation in herbaceous plants. Oikos 65:225–232

    Article  Google Scholar 

  • Agashe D, Bolnick DI (2010) Intraspecific genetic variation and competition interact to influence niche expansion. Proc R Soc Lond B Biol Sci 277:2915–2924

    Article  Google Scholar 

  • Araújo MS, Gonzaga MO (2007) Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav Ecol Sociobiol 61:1855–1863

    Article  Google Scholar 

  • Araújo MS, Guimarães PR, Svanbäck R, Pinheiro A, Guuimarães P, Dos Reis SF, Bolnick DI (2008) Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89:1981–1993

    Article  PubMed  Google Scholar 

  • Araújo MS, Bolnick DI, Martinelli LA, Giaretta AA, Dos Reis SF (2009) Individual-level diet variation in four species of Brazilian frogs. J Anim Ecol 78:848–856

    Article  PubMed  Google Scholar 

  • Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958

    Article  PubMed  Google Scholar 

  • Bell AM (2007) Evolutionary biology: animal personalities. Nature 447:539–540

    Article  CAS  PubMed  Google Scholar 

  • Bison M, Ibanez S, Redjadj C, Boyer F, Coissac E, Miquel C, Rioux D, Said S, Maillard D, Taberlet P, Yoccoz NG, Loison A (2015) Upscaling the niche variation hypothesis from the intra- to the inter-specific level. Oecologia 179:835–842

    Article  PubMed  Google Scholar 

  • Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941

    Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Araújo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci 104:10075–10079

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS (2010) Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc Lond B Biol Sci 277:1789–1797

    Article  Google Scholar 

  • Canty A, Ripley B (2017) boot: Bootstrap R (S-Plus) Functions. R Package Version 1:3–20

    Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15 N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Collins SL, Belnap J, Grimm NB, Rudgers JA, Dahm CN, D’Odorico P, Litvak M, Natvig DO, Peters DC, Pockman WT, Sinsabaugh RL, Wolf BO (2014) A multiscale, hierarchical model of pulse dynamics in aridland ecosystems. Annu Rev Ecol Evol Syst 45:397–419

    Article  Google Scholar 

  • Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv. https://doi.org/10.1126/sciadv.1400082

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa GC, Mesquita DO, Colli GR, Vitt LJ (2008) Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am Nat 172:868–877

    Article  PubMed  Google Scholar 

  • Costa-Pereira R, Tavares LER, de Camargo PB, Araújo MS (2017) Seasonal population and individual niche dynamics in a tetra fish in the Pantanal wetlands. Biotropica 49:531–538

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dickman CR, Greenville AC, Tamayo B, Wardle GM (2011) Spatial dynamics of small mammals in central Australian desert habitats: the role of drought refugia. J Mammal 92:1193–1209

    Article  Google Scholar 

  • Ernest SKM, Brown JH, Parmenter RR (2000) Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos 88:470–482

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Phys 9:121–137

    CAS  Google Scholar 

  • Fox BJ (2011) Review of small mammal trophic structure in drylands: resource availability, use, and disturbance. J Mammal 92:1179–1192

    Article  Google Scholar 

  • Frédérich B, Lehanse O, Vandewalle P, Lepoint G (2010) Trophic niche width, shift, and specialization of Dascyllus aruanus in Toliara Lagoon, Madagascar. Copeia 2010:218–226

    Article  Google Scholar 

  • Guo QF (2003) Temporal species richness-biomass relationships along successional gradients. J Veg Sci 14:121–128

    Article  Google Scholar 

  • Guo QF, Brown JH, Valone TJ, Kachman SD, Aug N (2000) Constraints of seed size on plant distribution and abundance. Ecology 81:2149–2155

    Article  Google Scholar 

  • Hart SP, Schreiber SJ, Levine JM (2016) How variation between individuals affects species coexistence. Ecol Lett 19:825–838

    Article  PubMed  Google Scholar 

  • Herrera LGM, Korine C, Fleming TH, Arad Z (2008) Dietary implications of intrapopulation variation in nitrogen isotope composition of an old world fruit bat. J Mammal 89:1184–1190

    Article  Google Scholar 

  • Hoffmeister DF (1986) Mammals of Arizona. University of Arizona Press, Tucson

    Google Scholar 

  • Hope AG, Parmenter RR (2007) Food habits of rodents inhabiting arid and semi-arid ecosystems of central New Mexico. Spec Publ Mus Southwest Biol 9:1–75

    Google Scholar 

  • Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ, Kuzmina ML, Rubenstein DI, Wang W, Pringle RM (2015) DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc Natl Acad Sci 112:8019–8024

    Article  CAS  PubMed  Google Scholar 

  • Kelt DA (2011) Comparative ecology of desert small mammals: a selective review of the past 30 years. J Mammal 92:1158–1178

    Article  Google Scholar 

  • Kotler BP, Ayal Y, Subach A (1994) Effects of predatory risk and resource renewal on the timing of foraging activity in a gerbil community. Oecologia 100:391–396

    Article  PubMed  Google Scholar 

  • Kurle CM, Finkelstein ME, Smith KR, George D, Ciani D, Koch PL, Smith DR (2013) Discrimination factors for stable isotopes of carbon and nitrogen in blood and feathers from chicks and juveniles of the California condor. Condor 115:492–500

    Article  Google Scholar 

  • Lehmann D, Mfune JK, Gewers E, Brain C, Voigt CC (2015) Individual variation of isotopic niches in grazing and browsing desert ungulates. Oecologia 179:75–88

    Article  CAS  Google Scholar 

  • Lescroël A, Ballard G, Toniolo V, Barton KJ, Wilson PR, Lyver POB, Ainley DG (2010) Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91:2044–2055

    Article  Google Scholar 

  • Letnic M, Dickman CR (2010) Resource pulses and mammalian dynamics: conceptual models for hummock grasslands and other Australian desert habitats. Biol Rev 85:501–521

    Article  CAS  PubMed  Google Scholar 

  • Lima M, Ernest SKM, Brown JH, Belgrano A, Stenseth NC (2008) Chihuahuan Desert kangaroo rats: nonlinear effects of population dynamics, competition, and rainfall. Ecology 89:2594–2603

    Article  PubMed  Google Scholar 

  • Maldonado K, Newsome SD, Razeto-Barry P, Manuel Rios J, Piriz G, Sabat P (2019) Individual diet specialization is driven by phenotypic plasticity in digestive enzymes and trade-offs in animal performance. Ecol Lett 22:128–137

    Article  PubMed  Google Scholar 

  • Martínez Del Rio C, Sabat P, Anderson-Sprecher R, Gonzalez SP (2009) Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia 161:149–159

    Article  Google Scholar 

  • McCluney KE, Belnap J, Collins SL, González AL, Hagen EM, Holland JN, Kotler BP, Maestre FT, Smith SD, Wolf BO (2012) Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol Rev 87:563–582

    Article  PubMed  Google Scholar 

  • Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646

    Article  Google Scholar 

  • Meserve PL, Dickman CR, Kelt DA (2011) Small mammal community structure and dynamics in aridlands: overall patterns and contrasts with Southern Hemispheric systems. J Mammal 92:1223–1235

    Article  Google Scholar 

  • Moore DI (2016) Meteorology data from the Sevilleta National Wildlife Refuge, New Mexico (1988–2015). Environmental Data Initiative. https://doi.org/10.6073/pasta/4d71c09b242602114fb684c843e9d6ac. Dataset accessed 16 June 2018

  • Muldavin EH, Moore DI, Collins SL, Wetherill KR, Lightfoot DC (2008) Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia 155:123–132

    Article  PubMed  Google Scholar 

  • Mulhouse JM, Hallett LM, Collins SL (2017) The influence of seasonal precipitation and grass competition on 20 years of forb dynamics in northern Chihuahuan Desert grassland. J Veg Sci 28:250–259

    Article  Google Scholar 

  • Newsome SD (2018) Small mammal mark-recapture population dynamics at core research sites at the Sevilleta National Wildlife Refuge, New Mexico (1989–present). Environmental Data Initiative. https://doi.org/10.6073/pasta/cdd8f254ef97d854d6eb2efb7385b801. Dataset Accessed 6/16/2018

  • Notaro M, Liu Z, Gallimore RG, Williams JW, Gutzler DS, Collins SL (2010) Complex seasonal cycle of ecohydrology in the Southwest United States. J Geophys Res 115:G04034. https://doi.org/10.1029/2010JG001382

    Article  Google Scholar 

  • Orr TJ, Newsome SD, Wolf BO (2015) Cacti supply limited nutrients to a desert rodent community. Oecologia 178:1045–1062

    Article  PubMed  Google Scholar 

  • Parmenter RR, Yates TL, Anderson DR, Burnham KP, Dunnum JL, Franklin AB, Friggens MT, Lubow BC, Miller M, Olson GS, Parmenter CA, Pollard J, Rexstad E, Shenk TM, Stanley TR, White GC (2003) Small-mammal density estimation: a field comparison of grid-based vs. web-based density estimators. Ecol Monogr 73:1–26

    Article  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One. https://doi.org/10.1371/journal.pone.0009672

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrie MD, Collins SL, Gutzler DS, Moore DI (2014) Regional trends and local variability in monsoon precipitation in the northern Chihuahuan Desert, USA. J Arid Environ 103:63–70

    Article  Google Scholar 

  • Previtali MA, Lima M, Meserve PL, Kelt DA, Gutiérrez JR (2009) Population dynamics of two sympatric rodents in a variable environment: rainfall, resource variability, and predation. Ecology 90:1996–2006

    Article  PubMed  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rosenblatt AE, Nifong JC, Heithaus MR, Mazzotti FJ, Cherkiss MS, Jeffery BM, Elsey RM, Decker RA, Silliman BR, Guillette LJ Jr, Lowers RH, Larson JC (2015) Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178:5–16

    Article  PubMed  Google Scholar 

  • Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718

    Article  Google Scholar 

  • Rudgers JA, Chung YA, Maurer GE, Moore DI, Muldavin EH, Litvak M, Collins SL (2018) Climate sensitivity functions and net primary production: a framework for incorporating climate mean and variability. Ecology 99:576–582

    Article  PubMed  Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Phil Trans R Soc B Biol Sci 367:3135–3144

    Article  Google Scholar 

  • Smiley TM, Cotton LM, Badgley C, Cerling TE (2015) Small-mammal isotope ecology tracks climate and vegetation gradients across western North America. Oikos 125:1100–1109

    Article  CAS  Google Scholar 

  • Smith TB, Skúlason S (1996) Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu Rev Ecol Syst 27:111–133

    Article  Google Scholar 

  • Soininen EM, Ehrich D, Lecomte N, Yoccoz NG, Tarroux A, Berteaux D, Gauthier G, Gielly L, Brochmann C, Gussarova G, Ims RA (2014) Sources of variation in small rodent trophic niche: new insights from DNA metabarcoding and stable isotope analysis. Isotopes Environ Health Stud 50:361–381

    Article  CAS  PubMed  Google Scholar 

  • Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7:993–1012

    Google Scholar 

  • Svanbäck R, Bolnick DI (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc R Soc Lond B Biol Sci 274:839–844

    Article  Google Scholar 

  • Terraube J, Guixé D, Arroyo B (2014) Diet composition and foraging success in generalist predators: are specialist individuals better foragers? Basic Appl Ecol 15:616–624

    Article  Google Scholar 

  • Thibault KM, Ernest SKM, White EP, Brown JH, Goheen JR (2010) Long-term insights into the influence of precipitation on community dynamics in desert rodents. J Mammal 91:787–797

    Article  Google Scholar 

  • Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci 105:560–565

    Article  PubMed  Google Scholar 

  • Tsahar E, Wolf N, Izhaki I, Arad Z, Martinez Del Rio C (2008) Dietary protein influences the rate of 15 N incorporation in blood cells and plasma of Yellow-vented bulbuls (Pycnonotus xanthopygos). J Exp Biol 211:459–465

    Article  CAS  PubMed  Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390

    Article  Google Scholar 

  • Vander Wall SB (1990) Food hoarding in animals. University of Chicago Press, Chicago

    Google Scholar 

  • Warne RW, Pershall AD, Wolf BO (2010) Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91:1628–1638

    Article  PubMed  Google Scholar 

  • Wilson DS (1998) Adaptive individual differences within single populations. Philos Trans R Soc B Biol Sci 353:199–205

    Article  Google Scholar 

  • Wolff JO, Bateman GC (1978) Effects of food availability and ambient temperature on torpor cycles of Perognathus flavus (Heteromyidae). J Mammal 59:707–716

    Article  Google Scholar 

  • Woo KJ, Elliott KH, Davidson M, Gaston AL, Davoren GK (2008) Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J Anim Ecol 77:1082–1091

    Article  PubMed  Google Scholar 

  • Xia Y, Moore MI, Collins SL, Muldavin EH (2010) Aboveground production and species richness of annuals in Chihuahuan Desert grassland and shrub land plant communities. J Arid Environ 74:378–385

    Article  Google Scholar 

  • Yates TL, Mills JN, Parmenter CA, Ksiazek TG, Parmenter RR, Vande Castle JR, Calisher CH, Nichol ST, Abbott KD, Young JC, Morrison ML, Beaty BJ, Dunnum JL, Baker RJ, Salazar-Bravo J, Peters CJ (2002) The ecology and evolutionary history of an emergent disease: hantavirus pulmonary syndrome. Bioscience 52:989–998

    Article  Google Scholar 

  • Zaccarelli N, Bolnick DI, Mancinelli G (2013) RInSp: an r package for the analysis of individual specialization in resource use. Methods Ecol Evol 4:1018–1023

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Wilson, A. Richins, and M. Rodriquez Curras for assistance with fieldwork, and L. Burkemper and V. Atudorei for stable isotopes for analytical support. The research was completed with start-up funding to SDN, grants from NSF to the University of New Mexico for Long-term Ecological Research, and graduate research scholarships to JDN.

Author information

Authors and Affiliations

Authors

Contributions

SDN and BOW conceived and designed the study, SDN and JDN collected field data, JDN processed samples, analyzed data and drafted the manuscript, AJH and KM helped with data analysis and graphics, and all authors provided text and edited the manuscript.

Corresponding author

Correspondence to Scott L. Collins.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

Fieldwork was conducted with permission from the Fish and Wildlife Service and Institutional Animal Care and Use Committee (IACUC #13-100970-MC). All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Christian Voigt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noble, J.D., Collins, S.L., Hallmark, A.J. et al. Foraging strategies of individual silky pocket mice over a boom–bust cycle in a stochastic dryland ecosystem. Oecologia 190, 569–578 (2019). https://doi.org/10.1007/s00442-019-04432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04432-x

Keywords

Navigation