Skip to main content
Log in

Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

  • Methods
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88 %, whereas the false-positive rate was 18–24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agostinelli C, Lund U (2013) R package ‘circular’: circular statistics (version 0.4-7). https://r-forge.r-project.org/projects/circular/

  • Altman DG, Lausen B, Sauerbrei W, Schumacher M (1994) The dangers of using ‘optimal’ cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 86(11):829–835

    Article  CAS  PubMed  Google Scholar 

  • Anderson D (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York

    Book  Google Scholar 

  • Arlet S, Celisse A (2010) A survey of cross-validation methods for model selection. Stat Surv 4:40–79

    Article  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manage 74(6):1175–1178

    Article  Google Scholar 

  • Bar-David S, Bar-David I, Cross PC, Ryan SJ, Knetchel CU, Getz WM (2009) Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecol 90(9):2467–2479

    Article  Google Scholar 

  • Bjornlie DD, Thompson DJ, Haroldson MA, Schwartz CC, Gunther KA, Cain SL, Tyers DB, Frey KL, Aber BC (2014a) Methods to estimate distribution and range extent of grizzly bears in the Greater Yellowstone Ecosystem. Wildl Soc B 38(1):182–187

    Article  Google Scholar 

  • Bjornlie DD, van Manen FT, Ebinger MR, Haroldson MA, Thompson DJ, Costello CM (2014b) Whitebark pine, population density, and home-range size of grizzly bears in the Greater Yellowstone Ecosystem. PLoS One 9(2):1–7

    Article  Google Scholar 

  • Blanchard B (1985) Field techniques used in the study of grizzly bears. Interagency Grizzly Bear Study Team Report, Bozeman, p 24

    Google Scholar 

  • Breiman L (2001) Statistical modeling: the two cultures. Stat Sci 16:199–231

    Article  Google Scholar 

  • Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc B 365:2157–2162

    Article  Google Scholar 

  • Cavalcanti SMC, Gese EM (2010) Kill rates and predation patterns of jaguars (Panthera onca) in the southern Pantanal. Braz J Mammal 91(3):722–736

    Article  Google Scholar 

  • Cleaves M, Gutierrez RG, Gould W, Marchenko YV (2010) An introduction to survival analysis using stata. Stata, College Station

    Google Scholar 

  • Costello CM, van Manen FT, Haroldson MA, Ebinger MR, Cain SL, Gunther KA, Bjornlie DD (2014) Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem. Ecol Evol 4(10):2004–2018

    Article  Google Scholar 

  • Creel S (2010) Interactions between wolves and elk in the Yellowstone Ecosystem. In: Johnson J (ed) Knowing Yellowstone. Taylor, Lanham, pp 65–79

    Google Scholar 

  • Cristescu B, Stenhouse GB, Boyce MS (2015) Predicting multiple behaviors from GPS radio collar cluster data. Behav Ecol 26:452–464

    Article  Google Scholar 

  • Cross PC, Cole EK, Dobson AP, Edwards WH, Hamlin KL, Luikart G, Middleton AD, Scurlock BM, White PJ (2010) Probable causes of increasing brucellosis in free-ranging elk of the Greater Yellowstone Ecosystem. Ecol Appl 20(1):278–288

    Article  CAS  PubMed  Google Scholar 

  • DeMars CA, Auger-Methe M, Schlӓgel UE, Boutin S (2013) Inferring parturition and neonate survival from movement patterns of female ungulates: a case study using woodland caribou. Ecol Evol 3(12):4149–4160

    Article  Google Scholar 

  • Derocher AE, Wiig O, Bangjord G (2000) Predation of Svalbard reindeer by polar bears. Polar Biol 23:675–678

    Article  Google Scholar 

  • Elbroch ML, Lendrum PE, Newby J, Quigley H, Craighead D (2013) Seasonal foraging ecology of non-migratory cougars in a system with migrating prey. PLoS One 8(12):1–14

    Article  Google Scholar 

  • Ester, M, Kriegel HP, Jörg S, Xiaowei Xu (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. AAAI, pp 226–231

  • Foley AM, Cross PC, Christianson DA, Scurlock BM, Creel S (2015) Influences of supplemental feeding on winter elk calf:cow ratios in the sourthern Greater Yellowstone Ecosystem. J Wildl Manage 79(6):887–897

    Article  Google Scholar 

  • Fortin JK (2011) Niche separation of grizzly (Ursus arctos) and American black bears (Ursus americanus) in Yellowstone National Park. Dissertation, Washington State University, Pullman, WA

  • Fortin JK, Ware JV, Jansen HT, Schwartz CC, Robbins CT (2013) Temporal niche switching by grizzly bears but not American black bears in Yellowstone National Park. J Mammal 94(4):833–844

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Frair JL, Nielsen SE, Merrill EH, Lele SR, Boyce MS, Munro RH, Stenhouse GB, Beyer HL (2004) Removing GPS collar bias in habitat selection studies. J Appl Ecol 41(2):201–212

    Article  Google Scholar 

  • Gormezano LJ, Rockwell RF (2013) What to eat now? Shifts in terrestrial diet in western Hudson Bay. Ecol Evol 3(10):3509–3523

    PubMed  PubMed Central  Google Scholar 

  • Greater Yellowstone Coordinating Committee, Whitebark Pine Subcommittee (2011) Whitebark pine strategy for the Greater Yellowstone Area. In: Bockino N, Macfarlane W (eds) USDA Forest Service—Forest Health and Protection and Grand Teton National Park. Moose, Wyoming

  • Greater Yellowstone Whitebark Pine Monitoring Working Group (2014) Summary of preliminary step-trend analysis from the Interagency Whitebark Pine Long-term Monitoring Program—2004–2013. Prepared for the Interagency Grizzly Bear Study Team. Natural resource data series NPS/GRYN/NRDS—2014/600. National Park Service, Fort Collins, CO

  • Green GI, Mattson DJ, Peek JM (1997) Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J Wildl Manage 61(4):1040–1055

    Article  Google Scholar 

  • Gunther KA, Renkin RA (1989) Grizzly bear predation on elk calves and other fauna of Yellowstone National Park. Int Conf Bear Res Manage 8:329–334

    Google Scholar 

  • Gunther KA, Shoemaker RR, Frey KL, Haroldson MA, Cain SL, van Manen FT, Fortin JK (2014) Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem. Ursus 25(1):60–72

    Article  Google Scholar 

  • Haroldson MA, Schwartz CC, Cherry S, Moody DS (2004) Possible effects of elk harvest on fall distribution of grizzly bears in the Greater Yellowstone Ecosystem. J Wildl Manage 68(1):129–137

    Article  Google Scholar 

  • Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philos Trans R Soc B 365:2303–2312

    Article  Google Scholar 

  • Hennig C (2015) fpc: flexible procedures for clustering. R package version 2.1-7. http://CRAN.R-project.org/package=fpc

  • Hilderbrand GV, Schwartz CC, Robbins CT, Jacoby ME, Hanley TA, Arthur AM, Servheen C (1999) The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can J Zool 77(1):132–138

    Article  Google Scholar 

  • Jacoby ME, Hilderbrand GV, Servheen CW, Schwartz CC, Arthur SM, Hanley TA, Robbins CT, Michener R (1999) Trophic relations of brown and black bears in several western North American ecosystems. J Wildl Manage 63(3):921–929

    Article  Google Scholar 

  • Kasbohm JW, Vaughan MR, Kraus JG (1998) Black bear home range dynamics and movement patterns during a gypsy moth infestation. Ursus 10:259–268

    Google Scholar 

  • Kendall K (1983) Use of pine nuts by grizzly and black bears in the Yellowstone area. Int Conf Bear Res Manage 5:166–173

    Google Scholar 

  • Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F, Mitchel MS, Gillard M, Moorcroft PR (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philos Trans R Soc B 365:2221–2231

    Article  Google Scholar 

  • Knopff KH, Knopff AA, Warren MB, Boyce MS (2009) Evaluating global positioning system telemetry techniques for estimating cougar predation parameters. J Wildl Manage 73(4):586–597

    Article  Google Scholar 

  • Krofel M, Kos I, Klemen J (2012) The noble cats and the big bad scavengers: effects of dominant scavengers on solitary predators. Behav Ecol Sociobiol 66:1297–1304

    Article  Google Scholar 

  • Lele SR, Merrill EH, Keim J, Boyce MS (2013) Selection, use, choice, and occupancy: clarifying concepts in resource selection studies. J Anim Ecol 82(6):1183–1191

    Article  PubMed  Google Scholar 

  • Long RA, Kie JG, Bowyer TR, Hurley MA (2009) Resource selection and movements by female mule deer Odocoileus hemionus: effects of reproductive stage. Wildl Biol 15(3):288–298

    Article  Google Scholar 

  • Lu Y (2000) Spatial cluster analysis for point data: location quotients versus kernel density. University Consortium for Geographical Information Science Summer Assembly, Portland, OR

  • MacCallum RC, Zhang S, Preacher KJ, Rucker DD (2002) On the practice of dichotomization of quantitative variables. Psychol Methods 7:19–40

    Article  PubMed  Google Scholar 

  • Mace RD, Jonkel CJ (1986) Local food habits of the grizzly bear in Montana. Int Conf Bear Res Manage 6:105–110

    Google Scholar 

  • Macfarlane WW, Logan JA, Kern WR (2010) Using the landscape assessment system (LAS) to assess mountain pine beetle-caused mortality of whitebark pine, Greater Yellowstone Ecosystem, 2009: project report. Prepared for the Greater Yellowstone Coordinating Committee, Whitebark Pine Subcommittee, Jackson, WY

  • Macfarlane WW, Logan JA, Kern WR (2013) An innovative aerial assessment of Greater Yellowstone Ecosystem mountain pine beetle-caused whitebark pine mortality. Ecol. Appl. 23:421–437

    Article  PubMed  Google Scholar 

  • Mahalovich MF (2014) Grizzly bears and whitebark pine in the Greater Yellowstone Ecosystem. Future status of whitebark pine: blister rust resistance, mountain pine beetle, and climate change. Report 2470 RRM-NR-WP-13-01, US Department of Agriculture Forest Service, Northern Region, Missoula, MO

  • Makridakis SG, Wheelwright SC, Hyndman RJ (1998) Forecasting: methods and applications, 3rd edn. Wiley, New York

    Google Scholar 

  • MATLAB (2012) MATLAB and statistics toolbox release 2012b. MathWorks, Natick

    Google Scholar 

  • Mattson DJ (1997) Use of ungulates by Yellowstone grizzly bears Ursus arctos. Biol Conserv 81:161–177

    Article  Google Scholar 

  • Mattson DJ (2005) Consumption of pondweed rhizomes by Yellowstone grizzly bears. Ursus 16(1):41–46

    Article  Google Scholar 

  • Mattson DJ, Blanchard BM, Knight RR (1991) Food habits of Yellowstone grizzly bears, 1977–1987. Can J Zool 69(6):1619–1629

    Article  Google Scholar 

  • Mazerolle MJ (2014) AICcmodavg: model selection and multimodel inference based on (Q)AICc. R package version 2.00. http://CRAN.R-project.org/package=AICcmodavg

  • Moe TF, Kindberg J, Jansson I, Swenson JE (2007) The importance of diel behavior when studying habitat selection: examples from female Scandinavian brown bears (Ursus arctos). Can J Zool 85:518–525

    Article  Google Scholar 

  • Murphy KM, Felzien GS, Hornocker MG, Ruth TK (1998) Encounter competition between bears and cougars: some ecological implications. Ursus 10:55–60

    Google Scholar 

  • Newman WB, Watson FGR (2009) The central Yellowstone landscape: terrain, geology, climate, vegetation. In: Garrot RA, White P, Watson FGR (eds) The ecology of large mammals in central Yellowstone: sixteen years of integrated field studies. Elsevier, San Diego, pp 17–55

    Google Scholar 

  • Pierce KL, Despain DG, Morgan LA, Good JM (2007) The Yellowstone hotspot, Greater Yellowstone Ecosystem, and human geography. Publ US Geol Survey Paper 79:1–38

    Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rauset GR, Kindberg J, Swenson J (2012) Modeling female brown bear kill rates on moose calves using global positioning satellite data. J Wildl Manage 76(8):1597–1606

    Article  Google Scholar 

  • Ripple WJ, Beschta RL, Fortin JK, Robbins CT (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. J Anim Ecol 83(1):223–233

    Article  PubMed  Google Scholar 

  • Royston P, Altman DG, Sauerbrei W (2006) Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 25:127–141

    Article  PubMed  Google Scholar 

  • Ruth TK, Smith DW, Haroldson MA, Boutte P, Charles CC, Quigley HQ, Cherry S, Murphy KM, Tyers D, Frey K (2003) Large carnivore response to recreational big-game hunting along Yellowstone National Park and Absaroka Beartooth Wilderness boundary. Wildl Soc Bull 31(4):1150–1161

    Google Scholar 

  • Sala A, Hopping K, McIntire EJB, Delzon S, Crone EE (2012) Masting in whitebark pine depletes stored nutrients. New Phytol 196(1):189–199

    Article  CAS  PubMed  Google Scholar 

  • Schleyer, B (1983) Activity patterns of grizzly bears in the Yellowstone ecosystem and their reproductive behavior, predation and the use of carrion. M.Sci,. thesis, Montana State University, Bozeman, MO

  • Schwartz CC, Miller SD, Haroldson MA (2003) Grizzly bear. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild Mammals of North America: biology, management, and conservation, 2nd edn. Johns Hopkins University Press, Baltimore, pp 556–586

    Google Scholar 

  • Schwartz CC, Podruzny S, Cain SL, Cherry S (2009) Performance of spread spectrum GPS collars on grizzly and black bears. J Wildl Manage 73(7):1174–1183

    Article  Google Scholar 

  • Schwartz CC, Cain SL, Podruzny S, Cherry S, Frattaroli L (2010) Contrasting activity patterns of sympatric and allopatric black and grizzly bears. J Wildl Manage 74(8):1628–1638

    Article  Google Scholar 

  • Schwartz CC, Fortin JK, Teisberg JE, Haroldson MA, Servheen C, Robbins C, van Manen FT (2014) Body composition and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. J Wildl Manage 78(1):68–78

    Article  Google Scholar 

  • Seidel DP, Boyce MS (2015) Patch-use dynamics by a large herbivore. Movement Ecol 3(7)

  • Shivik JA, Gilbert-Norton LB, Wilson RR (2011) Will an artificial scent boundary prevent coyote intrusion? Wildl Soc B 35:494–497

    Article  Google Scholar 

  • Shmueli G (2010) To explain or to predict? Stat Sci 25(3):289–310

    Article  Google Scholar 

  • Swenson JE, Dahle B, Busk H, Opseth O, Johansen T, Söderberg A, Wallin K, Cederlund G (2007) Predation on moose calves by European brown bears. J Wildl Manage 71(6):1993–1997

    Article  Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc B 365:2163–2176

    Article  Google Scholar 

  • Valone TJ (2006) Are animals capable of Bayesian updating? An empirical review. Oikos 112(2):252–259

    Article  Google Scholar 

  • van Manen FT, Haroldson MA, Bjornlie DD, Ebinger MR, Thompson DJ, Costello CM, White GC (2016) Density dependence, whitebark pine, and vital rates of grizzly bears. J Wildl Manage 80(2):300–313

    Article  Google Scholar 

  • Van Morter B, Visscher DR, Jerde CL, Frair JL, Merril EH (2010) Identifying movement states from locational data using cluster analysis. J Wildl Manage 74(3):588–594

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Webb NF, Hebblewhite M, Merrill EH (2008) Statistical methods for identifying wolf kill sites using global positioning system locations. J Wildl Manage 72(3):798–807

    Article  Google Scholar 

  • White PJ, Wallen RL, Geremia C, Treanor JJ, Blanton DW (2011) Management of Yellowstone bison and brucellosis transmission risk—implications for conservation and restoration. Biol Conserv 144:1322–1334

    Article  Google Scholar 

  • Wyman T (2002) Grizzly bear predation on a bull bison in Yellowstone National Park. Ursus 13:375–376

    Google Scholar 

  • Zager P, Beecham J (2006) The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17(2):95–108

    Article  Google Scholar 

Download references

Acknowledgments

We thank the many field personnel from member agencies of the IGBST who contributed to the collection of grizzly bear data used in these analyses. Member agencies include the Northern Rocky Mountain Science Center of the US Geological Survey; Wyoming Game and Fish Department; Montana Fish, Wildlife, and Parks; Idaho Fish and Game; National Park Service; US Forest Service; US Fish and Wildlife Service; and the Wind River Fish and Game of the Shoshone and Arapaho Tribes. We thank N. Counsell, J. Erlenbach, R. Fitzpatrick, A. Gannick, J. Lewis, S. McKenzie, K. Miller, R. Mowry, K. Quinton, G. Rasmussen, C. Rumble, C. Wickhem, L. Frattaroli, K. Wilmot, S. Dewey, J. Stephenson, and G. Wilson for assistance with site visit data from Grand Teton and Yellowstone National Parks. We thank M. Proctor for his review as part of the US Geological Survey Fundamental Science Practices and two anonymous reviewers whose comments substantially improved the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author contribution statement

M. A. H. originally formulated the research questions; M. R. E., M. A. H., F. V. M. developed methodology; D. D. B., D. J. T., K. A. G., J. K. F., J. E. T., and S. R. P. collected field data; M. R. E., M. A. H., F. V. M., and C. M. C. wrote the manuscript. Other authors provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Ebinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded in part by the National Park Service, US Fish and Wildlife Service, and the US Geological survey.

Additional information

Communicated by Andreas Zedrosser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebinger, M.R., Haroldson, M.A., van Manen, F.T. et al. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data. Oecologia 181, 695–708 (2016). https://doi.org/10.1007/s00442-016-3594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3594-5

Keywords

Navigation