Skip to main content
Log in

Specification of the Drosophila Orcokinin A neurons by combinatorial coding

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The central nervous system contains a daunting number of different cell types. Understanding how each cell acquires its fate remains a major challenge for neurobiology. The developing embryonic ventral nerve cord (VNC) of Drosophila melanogaster has been a powerful model system for unraveling the basic principles of cell fate specification. This pertains specifically to neuropeptide neurons, which typically are stereotypically generated in discrete subsets, allowing for unambiguous single-cell resolution in different genetic contexts. Here, we study the specification of the OrcoA-LA neurons, characterized by the expression of the neuropeptide Orcokinin A and located laterally in the A1-A5 abdominal segments of the VNC. We identified the progenitor neuroblast (NB; NB5-3) and the temporal window (castor/grainyhead) that generate the OrcoA-LA neurons. We also describe the role of the Ubx, abd-A, and Abd-B Hox genes in the segment-specific generation of these neurons. Additionally, our results indicate that the OrcoA-LA neurons are “Notch Off” cells, and neither programmed cell death nor the BMP pathway appears to be involved in their specification. Finally, we performed a targeted genetic screen of 485 genes known to be expressed in the CNS and identified nab, vg, and tsh as crucial determinists for OrcoA-LA neurons. This work provides a new neuropeptidergic model that will allow for addressing new questions related to neuronal specification mechanisms in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abbott MK, Lengyel JA (1991) Embryonic head involution and rotation of male terminalia require the drosophila locus head involution defective. Genetics 129(3):783–789. https://doi.org/10.1093/genetics/129.3.783

    Article  CAS  Google Scholar 

  • Allan DW, Park D, Pierre SES, Taghert PH, Thor S (2005) Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron (Cambridge, Mass.) 45(5), 689–700. https://doi.org/10.1016/j.neuron.2005.01.026

  • Allan DW, Pierre SES, Miguel-Aliaga I, Thor S (2003) Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell 113(1):73–86. https://doi.org/10.1016/S0092-8674(03)00204-6

    Article  CAS  Google Scholar 

  • Baumgardt M, Karlsson D, Salmani BY, Bivik C, MacDonald RB, Gunnar E, Thor S (2014) Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Dev Cell 30(2):192–208

    Article  CAS  Google Scholar 

  • Baumgardt M, Karlsson D, Terriente J, Díaz-Benjumea FJ, Thor S (2009) Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139(5):969–982. https://doi.org/10.1016/j.cell.2009.10.032

    Article  CAS  Google Scholar 

  • Baumgardt M, Miguel-Aliaga I, Karlsson D, Ekman H, Thor S (2007) Specification of neuronal identities by feedforward combinatorial coding. PLoS Biol 5(2):e37

    Article  Google Scholar 

  • Benito-Sipos J, Estacio-Gómez A, Moris-Sanz M, Baumgardt M, Thor S, Díaz-Benjumea FJ (2010) A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the drosophila CNS. Development (cambridge, England) 137(19):3327–3336. https://doi.org/10.1242/dev.052233

    Article  CAS  Google Scholar 

  • Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of drosophila melanogaster. I. neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179(1), 41–64

  • Bray SJ, Burke B, Brown NH, Hirsh J (1989) Embryonic expression pattern of a family of drosophila proteins that interact with a central nervous system regulatory element. Genes Dev 3(8):1130–1145. https://doi.org/10.1101/gad.3.8.1130

    Article  CAS  Google Scholar 

  • Broadus J, Skeath JB, Spana EP, Bossing T, Technau G, Doe CQ (1995) New neuroblast markers and the origin of the aCC/pCC neurons in the drosophila central nervous system. Mech Dev 53(3):393–402

    Article  CAS  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of drosophila melanogaster. . . (). Berlin.: Springer-Verlag

  • Casanova J, Sánchez-Herrero E, Busturia A, Morata G (1987) Double and triple mutant combinations of bithorax complex of drosophila. EMBO J 6(10):3103–3109. https://doi.org/10.1002/j.1460-2075.1987.tb02619.x

    Article  CAS  Google Scholar 

  • Chen J, Choi MS, Mizoguchi A, Veenstra JA, Kang K, Kim YJ, Kwon JY (2015) Isoform-specific expression of the neuropeptide orcokinin in drosophila melanogaster. Peptides 68:50–57

    Article  CAS  Google Scholar 

  • Chiang A, O’Connor MB, Paro R, Simon J, Bender W (1995) Discrete polycomb-binding sites in each parasegmental domain of the bithorax complex. Development (cambridge, England) 121(6):1681–1689. https://doi.org/10.1242/dev.121.6.1681

    Article  CAS  Google Scholar 

  • Chu-LaGraff Q, Doe CQ (1993) Neuroblast specification and formation regulated by wingless in the drosophila CNS. Science (New York, N.Y.) 261(5128), 1594–1597. https://doi.org/10.1126/science.8372355

  • Cleary MD, Doe CQ (2006) Regulation of neuroblast competence: Multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev 20(4):429–434

    Article  CAS  Google Scholar 

  • Doe CQ (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the drosophila central nervous system. Development (cambridge, England) 116(4):855–863. https://doi.org/10.1242/dev.116.4.855

    Article  CAS  Google Scholar 

  • Félix JT, Magariños M, Díaz-Benjumea FJ (2007) Nab controls the activity of the zinc-finger transcription factors squeeze and rotund in drosophila development. Development (cambridge, England) 134(10):1845–1852

    Article  Google Scholar 

  • Gabilondo H, Losada-Pérez M, Saz D, d., Molina, I., León, Y., Canal, I., … Benito-Sipos, J. (2011) A targeted genetic screen identifies crucial players in the specification of the drosophila abdominal capaergic neurons. Mech Dev 128(3–4):208–221. https://doi.org/10.1016/j.mod.2011.01.002

    Article  CAS  Google Scholar 

  • Gauthier SA, Hewes RS (2006) Transcriptional regulation of neuropeptide and peptide hormone expression by the drosophila dimmed and cryptocephal genes. J Exp Biol 209(Pt 10):1803–1815

    Article  CAS  Google Scholar 

  • Griffiths RC, Benito-Sipos J, Fenton JC, Torroja L, Hidalgo A (2007) Two distinct mechanisms segregate prospero in the longitudinal glia underlying the timing of interactions with axons. Neuron Glia Biol 3(1):75–88. https://doi.org/10.1017/S1740925X07000610

    Article  Google Scholar 

  • Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ (2005) Regulation of temporal identity transitions in drosophila neuroblasts. Dev Cell 8(2):193–202

    Article  CAS  Google Scholar 

  • Grosskortenhaus R, Robinson KJ, Doe CQ (2006) Pdm and castor specify late-born motor neuron identity in the NB7-1 lineage. Genes Dev 20(18):2618–2627

    Article  CAS  Google Scholar 

  • Haerry TE, Khalsa O, O’Connor MB, Wharton KA (1998) Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in drosophila. Development (cambridge, England) 125(20):3977–3987. https://doi.org/10.1242/dev.125.20.3977

    Article  CAS  Google Scholar 

  • Hamanaka Y, Park D, Yin P, Annangudi SP, Edwards TN, Sweedler J, Taghert PH (2010) Transcriptional orchestration of the regulated secretory pathway in neurons by the bHLH protein DIMM. Current Biology : CB 20(1):9–18. https://doi.org/10.1016/j.cub.2009.11.065

    Article  CAS  Google Scholar 

  • Hewes RS, Park D, Gauthier SA, Schaefer AM, Taghert PH (2003) The bHLH protein dimmed controls neuroendocrine cell differentiation in drosophila. Development (cambridge, England) 130(9):1771–1781. https://doi.org/10.1242/dev.00404

    Article  CAS  Google Scholar 

  • Hirth F, Hartmann B, Reichert H (1998) Homeotic gene action in embryonic brain development of drosophila. Development (cambridge, England) 125(9):1579–1589. https://doi.org/10.1242/dev.125.9.1579

    Article  CAS  Google Scholar 

  • Hitier R, Chaminade M, Préat T (2001) The drosophila castor gene is involved in postembryonic brain development. Mech Dev 103(1–2):3–11

    Article  CAS  Google Scholar 

  • Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106(4):511–521

    Article  CAS  Google Scholar 

  • Kanai MI, Okabe M, Hiromi Y (2005) Seven-up controls switching of transcription factors that specify temporal identities of drosophila neuroblasts. Dev Cell 8(2):203–213

    Article  CAS  Google Scholar 

  • Karlsson D, Baumgardt M, Thor S (2010) Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 8(5):e1000368. https://doi.org/10.1371/journal.pbio.1000368

    Article  CAS  Google Scholar 

  • Karcavich R, Doe CQ (2005) Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol. 481(3):240–251. https://doi.org/10.1002/cne.20371. PMID: 15593370

  • Keshishian H, Kim YS (2004) Orchestrating development and function: Retrograde BMP signaling in the drosophila nervous system. Trends Neurosci 27(3):143–147

    Article  CAS  Google Scholar 

  • Lacin H, Truman JW (2016) Lineage mapping identifies molecular and architectural similarities between the larval and adult drosophila central nervous system. eLife 5 e13399

  • Lamka ML, Boulet AM, Sakonju S (1992) Ectopic expression of UBX and ABD-B proteins during drosophila embryogenesis: Competition, not a functional hierarchy, explains phenotypic suppression. Development (cambridge, England) 116(4):841–854. https://doi.org/10.1242/dev.116.4.841

    Article  CAS  Google Scholar 

  • Lundell MJ, Lee HK, Pérez E, Chadwell L (2003) The regulation of apoptosis by numb/notch signaling in the serotonin lineage of drosophila. Development (cambridge, England) 130(17):4109–4121. https://doi.org/10.1242/dev.00593

    Article  CAS  Google Scholar 

  • Macías A, Morata G (1996) Functional hierarchy and phenotypic suppression among drosophila homeotic genes: The labial and empty spiracles genes. EMBO J 15(2):334–343

    Article  Google Scholar 

  • Maurange C, Cheng L, Gould AP (2008) Temporal transcription factors and their targets schedule the end of neural proliferation in drosophila. Cell 133(5):891–902. https://doi.org/10.1016/j.cell.2008.03.034

    Article  CAS  Google Scholar 

  • Mellerick DM, Kassis JA, Zhang SD, Odenwald WF (1992) Castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in drosophila. Neuron 9(5):789–803

    Article  CAS  Google Scholar 

  • Miguel-Aliaga I, Allan DW, Thor S (2004) Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification. Development (cambridge, England) 131(23):5837–5848

    Article  CAS  Google Scholar 

  • Monedero Cobeta I, Salmani BY, Thor S (2017) Anterior-posterior gradient in neural stem and daughter cell proliferation governed by spatial and temporal hox control. Current Biology : CB 27(8):1161–1172

    Article  CAS  Google Scholar 

  • Novotny T, Eiselt R, Urban J (2002) Hunchback is required for the specification of the early sublineage of neuroblast 7–3 in the drosophila central nervous system. Development (cambridge, England) 129(4):1027–1036. https://doi.org/10.1242/dev.129.4.1027

    Article  CAS  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster : I. zygotic loci on the second chromosome. Wilhelm Roux’s Arch Dev Biol 193(5), 267–282. https://doi.org/10.1007/BF00848156

  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–12318

    Article  CAS  Google Scholar 

  • Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000) Role of cortical tumour-suppressor proteins in asymmetric division of drosophila neuroblast. Nature 408(6812):593–596. https://doi.org/10.1038/35046087

    Article  CAS  Google Scholar 

  • Park D, Shafer OT, Shepherd SP, Suh H, Trigg JS, Taghert PH (2008a) The drosophila basic helix-loop-helix protein DIMMED directly activates PHM, a gene encoding a neuropeptide-amidating enzyme. Mol Cell Biol 28(1):410–421

    Article  CAS  Google Scholar 

  • Park D, Veenstra JA, Park JH, Taghert PH (2008b) Mapping peptidergic cells in drosophila: Where DIMM fits in. PLoS ONE 3(3):e1896. https://doi.org/10.1371/journal.pone.0001896

    Article  CAS  Google Scholar 

  • Pearson BJ, Doe CQ (2003) Regulation of neuroblast competence in drosophila. Nature 425(6958):624–628

    Article  CAS  Google Scholar 

  • Prokop A, Technau GM (1991) The origin of postembryonic neuroblasts in the ventral nerve cord of drosophila melanogaster. Development (cambridge, England) 111(1):79–88. https://doi.org/10.1242/dev.111.1.79

    Article  CAS  Google Scholar 

  • Ross J, Kuzin A, Brody T, Odenwald WF (2015) Cis-regulatory analysis of the drosophila pdm locus reveals a diversity of neural enhancers. BMC Genomics 16(1):700–702. https://doi.org/10.1186/s12864-015-1897-2

    Article  CAS  Google Scholar 

  • Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of drosophila embryonic neuroblasts: Neural cell types, axon projections and muscle targets. Development (cambridge, England) 126(21):4653–4689. https://doi.org/10.1242/dev.126.21.4653

    Article  CAS  Google Scholar 

  • Schmidt H, Rickert C, Bossing T, Vef O, Urban J, Technau GM (1997) The embryonic central nervous system lineages of drosophila melanogaster. II. neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 189(2), 186–204

  • Schuldt AJ, Brand AH (1999) Mastermind acts downstream of notch to specify neuronal cell fates in the drosophila central nervous system. Dev Biol 205(2):287–295

    Article  CAS  Google Scholar 

  • Skeath JB, Doe CQ (1998) Sanpodo and notch act in opposition to numb to distinguish sibling neuron fates in the drosophila CNS. Development (cambridge, England) 125(10):1857–1865. https://doi.org/10.1242/dev.125.10.1857

    Article  CAS  Google Scholar 

  • Skeath JB, Thor S (2003) Genetic control of drosophila nerve cord development. Curr Opin Neurobiol 13(1):8–15

    Article  CAS  Google Scholar 

  • Skeath JB, Zhang Y, Holmgren R, Carroll SB, Doe CQ (1995) Specification of neuroblast identity in the drosophila embryonic central nervous system by gooseberry-distal. Nature 376(6539):427–430. https://doi.org/10.1038/376427a0

    Article  CAS  Google Scholar 

  • Spana EP, Doe CQ (1996) Numb antagonizes notch signaling to specify sibling neuron cell fates. Neuron 17(1):21–26

    Article  CAS  Google Scholar 

  • Stangier J, Hilbich C, Burdzik S, Keller R (1992) Orcokinin: A novel myotropic peptide from the nervous system of the crayfish, orconectes limosus. Peptides 13(5):859–864

    Article  CAS  Google Scholar 

  • Stratmann J, Gabilondo H, Benito-Sipos J, Thor S (2016) Neuronal cell fate diversification controlled by sub-temporal action of kruppel. eLife 5. https://doi.org/10.7554/efe.19311

  • Suska A, Miguel-Aliaga I, Thor S (2011) Segment-specific generation of drosophila capability neuropeptide neurons by multi-faceted hox cues. Dev Biol 353(1):72–80. https://doi.org/10.1016/j.ydbio.2011.02.015

    Article  CAS  Google Scholar 

  • Technau GM, Berger C, Urbach R (2006) Generation of cell diversity and segmental pattern in the embryonic central nervous system of drosophila. Dev Dyn : an Official Publication of the American Association of Anatomists 235(4):861–869. https://doi.org/10.1002/dvdy.20566

    Article  CAS  Google Scholar 

  • Terriente Félix J, Magariños M, Díaz-Benjumea FJ (2007) Nab controls the activity of the zinc-finger transcription factors squeeze and rotund in drosophila development. Development (cambridge, England) 134(10):1845–1852

    Article  Google Scholar 

  • Thor S (2017) Nervous system development: Temporal patterning of large neural lineages. Current Biology : CB 27(10):R392–R394

    Article  CAS  Google Scholar 

  • Tran KD, Doe CQ (2008) Pdm and castor close successive temporal identity windows in the NB3-1 lineage. Development (cambridge, England) 135(21):3491–3499. https://doi.org/10.1242/dev.024349

    Article  CAS  Google Scholar 

  • Tsuji T, Hasegawa E, Isshiki T (2008) Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial hox proteins and temporal identity factors. Development (cambridge, England) 135(23):3859–3869. https://doi.org/10.1242/dev.025189

    Article  CAS  Google Scholar 

  • White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in drosophila. Science (New York, N.Y.) 264(5159), 677–683. https://doi.org/10.1126/science.8171319

  • Williams JA, Bell JB, Carroll SB (1991) Control of drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev 5(12B):2481–2495. https://doi.org/10.1101/gad.5.12b.2481

    Article  CAS  Google Scholar 

  • Wu J, Cohen SM (2000) Proximal distal axis formation in the drosophila leg: Distinct functions of teashirt and homothorax in the proximal leg. Mech Dev 94(1–2):47–56

    Article  CAS  Google Scholar 

  • Wu J, Cohen SM (2002) Repression of teashirt marks the initiation of wing development. Development (cambridge, England) 129(10):2411–2418. https://doi.org/10.1242/dev.129.10.2411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Developmental Studies Hybridoma Bank at the University of Iowa and The Bloomington Stock Center for sharing antibodies, fly lines, and DNAs.

Funding

This work was supported by a grant from the MINECO (BFU2016-78327-P) to J.B-S and The University of Queensland, Australia, to ST.

Author information

Authors and Affiliations

Authors

Contributions

IFRC, PBD, LCB, and MBR performed experiments. IFRC, PBD, and LCB performed the statistical analysis. IMC conducted the analysis of the RNA-seq data. IFRC, PBD, LCB, IMC, ST, and JBS compiled the figures. ST, IMC, and JBS planned and supervised the project. IMC, ST, and JBS wrote the manuscript.

Corresponding authors

Correspondence to Ignacio Monedero Cobeta or Jonathan Benito-Sipos.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Ferrera, I., Clarembaux-Badell, L., Baladrón-de-Juan, P. et al. Specification of the Drosophila Orcokinin A neurons by combinatorial coding. Cell Tissue Res 391, 269–286 (2023). https://doi.org/10.1007/s00441-022-03721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03721-x

Keywords

Navigation