Skip to main content

Advertisement

Log in

Porcine models for studying complications and organ crosstalk in diabetes mellitus

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, Fong S, van Lookeren CM, Godowski P, Williams PM, Chan AC, Clark HF (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331

    CAS  PubMed  Google Scholar 

  • Abbott A (2015) Inside the first pig biobank. Nature 519:397–398

    CAS  PubMed  Google Scholar 

  • Acharya NK, Qi X, Goldwaser EL, Godsey GA, Wu H, Kosciuk MC, Freeman TA, Macphee CH, Wilensky RL, Venkataraman V, Nagele RG (2017) Retinal pathology is associated with increased blood–retina barrier permeability in a diabetic and hypercholesterolaemic pig model: beneficial effects of the LpPLA2 inhibitor Darapladib. Diabetes Vasc Dis Res 14:200–213

    CAS  Google Scholar 

  • Afshin A, Reitsma MB, Murray CJL (2017) Health effects of overweight and obesity in 195 countries. N Engl J Med 377:1496–1497

    PubMed  Google Scholar 

  • Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P, Wessman Y, Shaat N, Spegel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark A, Lahti K, Forsen T, Tuomi T, Rosengren AH, Groop L (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6:361–369

    PubMed  Google Scholar 

  • Aizarani N, Saviano A, Sagar ML, Durand S, Herman JS, Pessaux P, Baumert TF, Grun D (2019) A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:19–204

  • Albl B, Haesner S, Braun-Reichhart C, Streckel E, Renner S, Seeliger F, Wolf E, Wanke R, Blutke A (2016) Tissue sampling guides for porcine biomedical models. Toxicol Pathol 44:414–420

    PubMed  Google Scholar 

  • Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12:2032–2045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra161

    Google Scholar 

  • Al-Mashhadi RH, Bjorklund MM, Mortensen MB, Christoffersen C, Larsen T, Falk E, Bentzon JF (2015) Diabetes with poor glycaemic control does not promote atherosclerosis in genetically modified hypercholesterolaemic minipigs. Diabetologia 58:1926–1936

    CAS  PubMed  Google Scholar 

  • Alpers CE, Hudkins KL (2011) Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens 20:278–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association (2019) Standards of medical care in diabetes. Diabetes Care 42:S13–S28

  • Amuzie C, Swart JR, Rogers CS, Vihtelic T, Denham S, Mais DE (2016) A translational model for diet-related atherosclerosis: effect of statins on hypercholesterolemia and atherosclerosis in a minipig. Toxicol Pathol 44:442–449

    CAS  PubMed  Google Scholar 

  • Aune D, Feng T, Schlesinger S, Janszky I, Norat T, Riboli E (2018) Diabetes mellitus, blood glucose and the risk of atrial fibrillation: a systematic review and meta-analysis of cohort studies. J Diabetes Complicat 32:501–511

    Google Scholar 

  • Backman M, Flenkenthaler F, Blutke A, Dahlhoff M, Landstrom E, Renner S, Philippou-Massier J, Krebs S, Rathkolb B, Prehn C, Grzybek M, Coskun U, Rothe M, Adamski J, de Angelis MH, Wanke R, Frohlich T, Arnold GJ, Blum H, Wolf E (2019) Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes mellitus. Mol Metab 26:30–44

  • Badin JK, Kole A, Stivers B, Progar V, Pareddy A, Alloosh M, Sturek M (2018) Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. J Transl Med 16:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhti M, Bottcher A, Lickert H (2019) Modelling the endocrine pancreas in health and disease. Nat Rev Endocrinol 15:155–171

    CAS  PubMed  Google Scholar 

  • Barter PJ, Rye KA (2012) Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J Lipid Res 53:1755–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barter PJ, Hopkins GJ, Gorjatschko L, Jones ME (1982) A unified model of esterified cholesterol exchanges between human plasma lipoproteins. Atherosclerosis 44:27–40

    CAS  PubMed  Google Scholar 

  • Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570–2581

    CAS  PubMed  Google Scholar 

  • Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laughlin MH (2009) Altered mechanism of adenosine-induced coronary arteriolar dilation in early-stage metabolic syndrome. Exp Biol Med (Maywood) 234:683–692

    CAS  Google Scholar 

  • Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA (1994) Independent risk factors for atrial fibrillation in a population-based cohort The Framingham Heart Study. JAMA 271:840–844

    CAS  PubMed  Google Scholar 

  • Berryman DE, List EO, Palmer AJ, Chung M-Y, Wright-Piekarski J, Lubbers E, O’Connor P, Okada S, Kopchick JJ (2010) Two-year body composition analyses of long-lived GHR null mice. J Gerontol A Biol Sci Med Sci 65:31–40

    PubMed  Google Scholar 

  • Betz B, Conway BR (2016) An Update on the use of animal models in diabetic nephropathy research. Curr Diab Rep 16:18

    PubMed  PubMed Central  Google Scholar 

  • Betz MJ, Enerback S (2018) Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol 14:77–87

    CAS  PubMed  Google Scholar 

  • Bissinger A, Grycewicz T, Grabowicz W, Lubinski A (2011) The effect of diabetic autonomic neuropathy on P-wave duration, dispersion and atrial fibrillation. Arch Med Sci 7:806–812

    PubMed  PubMed Central  Google Scholar 

  • Bloodworth JMB, Gutgesell HP, Engerman RL (1965) Retinal vasculature of the pig: light and electron microscope studies. Exp Eye Res 4:174–178

  • Blutke A, Wanke R (2018) Sampling strategies and processing of biobank tissue samples from porcine biomedical models. J Vis Exp  6;(133). https://doi.org/10.3791/57276

  • Blutke A, Schneider MR, Wolf E, Wanke R (2016) Growth hormone (GH)-transgenic insulin-like growth factor 1 (IGF1)-deficient mice allow dissociation of excess GH and IGF1 effects on glomerular and tubular growth. Physiol Rep 4:e12709

  • Blutke A, Renner S, Flenkenthaler F, Backman M, Haesner S, Kemter E, Landstrom E, Braun-Reichhart C, Albl B, Streckel E, Rathkolb B, Prehn C, Palladini A, Grzybek M, Krebs S, Bauersachs S, Bahr A, Bruhschwein A, Deeg CA, De Monte E, Dmochewitz M, Eberle C, Emrich D, Fux R, Groth F, Gumbert S, Heitmann A, Hinrichs A, Kessler B, Kurome M, Leipig-Rudolph M, Matiasek K, Ozturk H, Otzdorff C, Reichenbach M, Reichenbach HD, Rieger A, Rieseberg B, Rosati M, Saucedo MN, Schleicher A, Schneider MR, Simmet K, Steinmetz J, Ubel N, Zehetmaier P, Jung A, Adamski J, Coskun U, Hrabe de Angelis M, Simmet C, Ritzmann M, Meyer-Lindenberg A, Blum H, Arnold GJ, Frohlich T, Wanke R, Wolf E (2017) The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes. Mol Metab 6:931–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boodhwani M, Sodha NR, Mieno S, Ramlawi B, Xu SH, Feng J, Clements RT, Ruel M, Sellke FW (2007a) Insulin treatment enhances the myocardial angiogenic response in diabetes. J Thorac Cardiovasc Surg 134:1453–1460 discussion 1460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boodhwani M, Sodha NR, Mieno S, Xu SH, Feng J, Ramlawi B, Clements RT, Sellke FW (2007b) Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation 116:I31–I37

    PubMed  PubMed Central  Google Scholar 

  • Brem G, Brenig B, Goodman HM, Selden RC, Graf F, Kruff B, Springmann K, Hondele J, Meyer J, Winnacker EL, Kräusslich H (1985) Production of transgenic mice, rabbits and pigs by microinjection into pronuclei. Zuchthygiene 20:251–252

    Google Scholar 

  • Brenner BM (1983) Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int 23:647–655

    CAS  PubMed  Google Scholar 

  • Broe R (2015) Early risk stratification in pediatric type 1 diabetes. Acta Ophthalmol 93(Thesis 1):1–19

    CAS  PubMed  Google Scholar 

  • Broe R, Rasmussen ML, Frydkjaer-Olsen U, Olsen BS, Mortensen HB, Hodgson L, Wong TY, Peto T, Grauslund J (2014) Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 63:3906–3914

    CAS  PubMed  Google Scholar 

  • Burnett JR, Hooper AJ (2008) Common and rare gene variants affecting plasma LDL cholesterol. Clin Biochem Rev 29:11–26

    PubMed  PubMed Central  Google Scholar 

  • Caie PD, Harrison DJ (2016) Next-generation pathology. Methods Mol Biol 1386:61–72

    CAS  PubMed  Google Scholar 

  • Cardoso CR, Salles GF, Deccache W (2003) Prognostic value of QT interval parameters in type 2 diabetes mellitus: results of a long-term follow-up prospective study. J Diabetes Complications 17:169–178

    PubMed  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Liu YQ, Li CH, Guo XM, Huang LJ (2009) The susceptibility of three strains of Chinese minipigs to diet-induced type 2 diabetes mellitus. Lab Anim (NY) 38:355–363

    Google Scholar 

  • Chen T, Sun M, Wang JQ, Cui JJ, Liu ZH, Yu B (2017a) A novel swine model for evaluation of dyslipidemia and atherosclerosis induced by human CETP overexpression. Lipids Health Dis 16:169

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sun X-B, Lu H-e, Wang F, Fan X-H (2017b) Effect of luteoin in delaying cataract in STZ-induced diabetic rats. Arch Pharm Res 40:88–95

    CAS  PubMed  Google Scholar 

  • Chen Y-L, Xu W, Rosa RH, Kuo L, Hein TW (2019) Hyperglycemia enhances constriction of retinal venules via activation of the reverse-mode sodium-calcium exchanger. Diabetes 68:1624–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N (2013) Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol 167:451–457

    PubMed  Google Scholar 

  • Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee K, Kang JT (2018) Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res 27:289–300

    CAS  PubMed  Google Scholar 

  • Chous AP, Richer SP, Gerson JD, Kowluru RA (2016) The Diabetes Visual Function Supplement Study (DiVFuSS). Br J Ophthalmol 100:227–234

    PubMed  Google Scholar 

  • Clark AJ, Adeniyi-Jones RO, Knight G, Leiper JM, Wiles PG, Jones RH, Keen H, MacCuish AC, Ward JD, Watkins PJ, Cauldwell JM, Glynne A, Scotton JB (1982) Biosynthetic human insulin in the treatment of diabetes A double-blind crossover trial in established diabetic patients. Lancet 2:354–357

    CAS  PubMed  Google Scholar 

  • Clauss S, Sinner MF, Kaab S, Wakili R (2015) The role of microRNAs in antiarrhythmic therapy for atrial fibrillation. Arrhythm Electrophysiol Rev 4:146–155

    PubMed  PubMed Central  Google Scholar 

  • Clauss S, Bleyer C, Schuttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kaab S (2019) Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 16:457–475

    PubMed  Google Scholar 

  • Clements RT, Sodha NR, Feng J, Boodhwani M, Liu Y, Mieno S, Khabbaz KR, Bianchi C, Sellke FW (2009) Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in diabetes. Microcirculation 16:193–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn JS, Tremblay M, Batal R, Jacques H, Rodriguez C, Steiner G, Mamer O, Davignon J (2004) Increased apoC-III production is a characteristic feature of patients with hypertriglyceridemia. Atherosclerosis 177:137–145

    CAS  PubMed  Google Scholar 

  • Cooper DKC, Ezzelarab M, Iwase H, Hara H (2018) Perspectives on the optimal genetically engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation 102:1974–1982

    PubMed  PubMed Central  Google Scholar 

  • Cui J, Chen Y, Wang HY, Wang RF (2014) Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 10:3270–3285

    PubMed  Google Scholar 

  • Davis BT, Wang XJ, Rohret JA, Struzynski JT, Merricks EP, Bellinger DA, Rohret FA, Nichols TC, Rogers CS (2014) Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 9:e93457

  • Denton KM (2000) Blood flow in the glomerular capillary network. Adv Organ Biol 9:93–107

  • Diemar SS, Sejling AS, Iversen KK, Engstrom T, Honge JL, Tonder N, Vejlstrup N, Idorn M, Ekstrom K, Pedersen-Bjergaard U, Thorsteinsson B, Dalsgaard M (2015) Influence of acute glycaemic level on measures of myocardial infarction in non-diabetic pigs. Scand\ Cardiovasc J 49:376–382

    PubMed  Google Scholar 

  • Doetschman T, Georgieva T (2017) Gene editing with CRISPR/Cas9 RNA-directed nuclease. Circ Res 120:876–894

    CAS  PubMed  Google Scholar 

  • Drinkwater JJ, Davis WA, Davis TME (2019) A systematic review of risk factors for cataract in type 2 diabetes. Diabetes Metab Res Rev 35:e3073

    PubMed  Google Scholar 

  • Dufrane D, Goebbels RM, Fdilat I, Guiot Y, Gianello P (2005) Impact of porcine islet size on cellular structure and engraftment after transplantation: adult versus young pigs. Pancreas 30:138–147

    CAS  PubMed  Google Scholar 

  • Dufrane D, van Steenberghe M, Guiot Y, Goebbels RM, Saliez A, Gianello P (2006) Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation 81:36–45

    CAS  PubMed  Google Scholar 

  • Dyson MC, Alloosh M, Vuchetich JP, Mokelke EA, Sturek M (2006) Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp Med 56:35–45

    CAS  PubMed  Google Scholar 

  • El Ouaamari A, Kawamori D, Dirice E, Liew CW, Shadrach JL, Hu J, Katsuta H, Hollister-Lock J, Qian WJ, Wagers AJ, Kulkarni RN (2013) Liver-derived systemic factors drive beta cell hyperplasia in insulin-resistant states. Cell reports 3:401–410

    PubMed  Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, Schadt EE, Stefansson K (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428

    CAS  PubMed  Google Scholar 

  • Evans RG, Eppel GA, Anderson WP, Denton KM (2004) Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J Hypertens 22:1439–1451

    CAS  PubMed  Google Scholar 

  • Ewing DJ, Neilson JM (1990) QT interval length and diabetic autonomic neuropathy. Diabet Med 7:23–26

    CAS  PubMed  Google Scholar 

  • Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, Li C, Zhang Z, Chen L, Li X, Liu J, Xiong Q, Zhang L, Jin Y, Liu X, Li L, Wei H, Yang H, Li R, Dai Y (2018) Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech 11:dmm036632

  • Fatemi O, Yuriditsky E, Tsioufis C, Tsachris D, Morgan T, Basile J, Bigger T, Cushman W, Goff D, Soliman EZ, Thomas A, Papademetriou V (2014) Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the Action to Control Cardiovascular Risk in Diabetes Study). Am J Cardiol 114:1217–1222

    PubMed  PubMed Central  Google Scholar 

  • Feingold KR, Grunfeld C (2018) Introduction to lipids and lipoproteins. Endotext [Internet]. MDText. com, Inc.

  • Feng Y, Yang S, Ma Y, Bai XY, Chen X (2015) Role of Toll-like receptors in diabetic renal lesions in a miniature pig model. Sci Adv 1:e1400183

    PubMed  PubMed Central  Google Scholar 

  • Filardi T, Ghinassi B, Di Baldassarre A, Tanzilli G, Morano S, Lenzi A, Basili S, Crescioli C (2019) Cardiomyopathy associated with diabetes: the central role of the cardiomyocyte. Int J Mol Sci 20: E3299

  • Fogo A, Ichikawa I (1989) Evidence for the central role of glomerular growth promoters in the development of sclerosis. Semin Nephrol 9:329–342

    CAS  PubMed  Google Scholar 

  • Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL 3rd, Klein R (2004) Retinopathy in diabetes. Diabetes Care 27(Suppl 1):S84–S87

  • Fontes JD, Lyass A, Massaro JM, Rienstra M, Dallmeier D, Schnabel RB, Wang TJ, Vasan RS, Lubitz SA, Magnani JW, Levy D, Ellinor PT, Fox CS, Benjamin EJ (2012) Insulin resistance and atrial fibrillation (from the Framingham Heart Study). Am J Cardiol 109:87–90

    CAS  PubMed  Google Scholar 

  • Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    CAS  PubMed  Google Scholar 

  • Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B, Niemann H, Izsvak Z, Ivics Z, Kues WA (2011) Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS One 6:e23573

  • Garside K, Henderson R, Makarenko I, Masoller C (2019) Topological data analysis of high resolution diabetic retinopathy images. PLoS One 14:e0217413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrity RG, Natarajan R, Nadler JL, Kimsey T (2001) Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50:1654–1665

    CAS  PubMed  Google Scholar 

  • Gerst F, Wagner R, Kaiser G, Panse M, Heni M, Machann J, Bongers MN, Sartorius T, Sipos B, Fend F, Thiel C, Nadalin S, Konigsrainer A, Stefan N, Fritsche A, Haring HU, Ullrich S, Siegel-Axel D (2017) Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia. 60:2240–2251

  • Gerstein HC, Waltman L (2006) Why don’t pigs get diabetes? Explanations for variations in diabetes susceptibility in human populations living in a diabetogenic environment. CMAJ 174:25–26

    PubMed  PubMed Central  Google Scholar 

  • Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T (2016) Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol 5:49–56

    PubMed  Google Scholar 

  • Giraud S, Favreau F, Chatauret N, Thuillier R, Maiga S, Hauet T (2011) Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011:532127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant SFA (2019) The TCF7L2 Locus: a genetic window into the pathogenesis of type 1 and type 2 diabetes. Diabetes Care 42:1624–1629

    PubMed  PubMed Central  Google Scholar 

  • Grisanti LA (2018) Diabetes and arrhythmias: pathophysiology, mechanisms and therapeutic outcomes. Front Physiol 9:1669

    PubMed  PubMed Central  Google Scholar 

  • Groenen MAM (2016) A decade of pig genome sequencing: a window on pig domestication and evolution. Genet Sel Evol 48:23–23

    PubMed  PubMed Central  Google Scholar 

  • Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens H-J, Li S, Larkin DM, Kim H, Frantz LAF, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi S-H, Chow W, Clark RC, Clee C, Crooijmans RPMA, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du Z-Q, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JGR, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu Z-L, Humphray SJ, Hunt T, Hornshøj H, Jeon J-T, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim J-H, Kim K-W, Kim T-H, Larson G, Lee K, Lee K-T, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Truong Nguyen D, Ni P, Oh S-J, Onteru S, Panitz F, Park E-W, Park H-S, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398

  • Gross ML, Amann K, Ritz E (2005) Nephron number and renal risk in hypertension and diabetes. J Am Soc Nephrol 16(Suppl 1):S27–S29

    PubMed  Google Scholar 

  • Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13

    PubMed  PubMed Central  Google Scholar 

  • Guo M, Wu MH, Korompai F, Yuan SY (2003) Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes. Physiol Genomics 12:139–146

    CAS  PubMed  Google Scholar 

  • Gurley SB, Mach CL, Stegbauer J, Yang J, Snow KP, Hu A, Meyer TW, Coffman TM (2010) Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice. Am J Physiol Renal Physiol 298:F788–F795

    CAS  PubMed  Google Scholar 

  • Haesner S (2018) Charakterisierung von Proben diabetischer INSC94Y transgener Schweine aus dem Munich MIDY-Pig Biobank Projekt. Doctoral thesis, LMU Munich

  • Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell research 24:372–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hainsworth DP, Katz ML, Sanders DA, Sanders DN, Wright EJ, Sturek M (2002) Retinal capillary basement membrane thickening in a porcine model of diabetes mellitus. Comp Med 52:523–529

    CAS  PubMed  Google Scholar 

  • Hall JL, Stanley WC, Lopaschuk GD, Wisneski JA, Pizzurro RD, Hamilton CD, McCormack JG (1996) Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol 271:H2320–H2329

    CAS  PubMed  Google Scholar 

  • Hamamdzic D, Wilensky RL (2013) Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J Diabetes Res 2013:761415

    PubMed  PubMed Central  Google Scholar 

  • Hamamdzic D, Fenning RS, Patel D, Mohler ER 3rd, Orlova KA, Wright AC, Llano R, Keane MG, Shannon RP, Birnbaum MJ, Wilensky RL (2010) Akt pathway is hypoactivated by synergistic actions of diabetes mellitus and hypercholesterolemia resulting in advanced coronary artery disease. Am J Physiol Heart Circ Physiol 299:H699–H706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    CAS  PubMed  Google Scholar 

  • Han W, Fang W, Gan Q, Guan S, Li Y, Wang M, Gong K, Qu X (2017) Low-dose sustained-release deoxycorticosterone acetate-induced hypertension in Bama miniature pigs for renal sympathetic nerve denervation. J Am Soc Hypertens 11:314–320

    CAS  PubMed  Google Scholar 

  • Hara S, Umeyama K, Yokoo T, Nagashima H, Nagata M (2014) Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans. PLoS One 9:e92219

    PubMed  PubMed Central  Google Scholar 

  • Haring HU (2016) Novel phenotypes of prediabetes? Diabetologia 59:1806–1818

    PubMed  PubMed Central  Google Scholar 

  • Hasdai D, Rizza RA, Holmes DR Jr, Richardson DM, Cohen P, Lerman A (1998) Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro. Hypertension 32:228–234

    CAS  PubMed  Google Scholar 

  • Hasdai D, Nielsen MF, Rizza RA, Holmes DR Jr, Richardson DM, Cohen P, Lerman A (1999) Attenuated in vitro coronary arteriolar vasorelaxation to insulin-like growth factor I in experimental hypercholesterolemia. Hypertension 34:89–95

    CAS  PubMed  Google Scholar 

  • Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:83

    PubMed  PubMed Central  Google Scholar 

  • Hasler-Rapacz J, Ellegren H, Fridolfsson AK, Kirkpatrick B, Kirk S, Andersson L, Rapacz J (1998) Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine. Am J Med Genet 76:379–386

    CAS  PubMed  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108:12013–12017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hein TW, Potts LB, Xu W, Yuen JZ, Kuo L (2012) Temporal development of retinal arteriolar endothelial dysfunction in porcine type 1 diabetesvasomotor function of diabetic retinal arterioles. Invest Ophthalmol Vis Sci 53:7943–7949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinke S, Ludwig B, Schubert U, Schmid J, Kiss T, Steffen A, Bornstein S, Ludwig S (2016) Diabetes induction by total pancreatectomy in minipigs with simultaneous splenectomy: a feasible approach for advanced diabetes research. Xenotransplantation 23:405–413

    PubMed  Google Scholar 

  • Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R (2007) Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 56:1268–1276

    CAS  PubMed  Google Scholar 

  • Herbach N, Schairer I, Blutke A, Kautz S, Siebert A, Goke B, Wolf E, Wanke R (2009) Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis. Am J Physiol Renal Physiol 296:F819–F829

    CAS  PubMed  Google Scholar 

  • Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, Kaczmarek V, Moretti A, Laugwitz KL, Skroblin P, Mayr M, Milting H, Dendorfer A, Reichart B, Wolf E, Kupatt C (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69:131–143

    CAS  PubMed  Google Scholar 

  • Hinrichs A, Kessler B, Kurome M, Blutke A, Kemter E, Bernau M, Scholz AM, Rathkolb B, Renner S, Bultmann S, Leonhardt H, de Angelis MH, Nagashima H, Hoeflich A, Blum WF, Bidlingmaier M, Wanke R, Dahlhoff M, Wolf E (2018) Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol Metab 11:113–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang DT, Matsunari H, Nagaya M, Nagashima H, Millis JM, Witkowski P, Periwal V, Hara M, Jo J (2014) A conserved rule for pancreatic islet organization. PloS One 9:e110384

    PubMed  PubMed Central  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou L, Shi J, Cao L, Xu G, Hu C, Wang C (2017) Pig has no uncoupling protein 1. Biochem Biophys Res Commun 487:795–800

    CAS  PubMed  Google Scholar 

  • Hoy WE, Hughson MD, Bertram JF, Douglas-Denton R, Amann K (2005) Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16:2557–2564

    PubMed  Google Scholar 

  • Huang L, Hua Z, Xiao H, Cheng Y, Xu K, Gao Q, Xia Y, Liu Y, Zhang X, Zheng X, Mu Y, Li K (2017) CRISPR/Cas9-mediated ApoE−/− and LDLR−/− double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget 8:37751–37760

    PubMed  PubMed Central  Google Scholar 

  • Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, Muhlfeld A, Koelling M, Pippin JW, Shankland SJ, Askari B, Rabaglia ME, Keller MP, Attie AD, Alpers CE (2010) BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol 21:1533–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley RR, Filion KB, Konety S, Alonso A (2011) Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol 108:56–62

    PubMed  PubMed Central  Google Scholar 

  • Inagi R, Yamamoto Y, Nangaku M, Usuda N, Okamato H, Kurokawa K, van Ypersele de Strihou C, Yamamoto H, Miyata T (2006) A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes 55:356–366

    CAS  PubMed  Google Scholar 

  • International Diabetes Federation (2017) IDF Diabetes Atlas. International Diabetes Federation (IDF), Brüssel

  • Itsumi M, Inoue S, Elia AJ, Murakami K, Sasaki M, Lind EF, Brenner D, Harris IS, Chio II, Afzal S, Cairns RA, Cescon DW, Elford AR, Ye J, Lang PA, Li WY, Wakeham A, Duncan GS, Haight J, You-Ten A, Snow B, Yamamoto K, Ohashi PS, Mak TW (2015) Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Cell Death Differ 22:1837–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain SS, Paglialunga S, Vigna C, Ludzki A, Herbst EA, Lally JS, Schrauwen P, Hoeks J, Tupling AR, Bonen A, Holloway GP (2014) High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 63:1907–1913

    CAS  PubMed  Google Scholar 

  • Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, Vajta G, Bolund L, Callesen H, Jorgensen AL, Nielsen AL, Mikkelsen JG (2011) Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res 20:533–545

    CAS  PubMed  Google Scholar 

  • Jastroch M, Andersson L (2015) When pigs fly, UCP1 makes heat. Mol Metab 4:359–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Piper Hanley K, Hanley NA (2013) Development of the human pancreas from foregut to endocrine commitment. Diabetes 62:3514–3522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen-Waern M, Andersson M, Kruse R, Nilsson B, Larsson R, Korsgren O, Essen-Gustavsson B (2009) Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism. Lab Anim 43:249–254

    CAS  PubMed  Google Scholar 

  • Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone DB, Holzman LB (2006) Clinical impact of research on the podocyte slit diaphragm. Nat Clin Pract Nephrol 2:271–282

    CAS  PubMed  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609

    CAS  PubMed  Google Scholar 

  • Kaabia Z, Poirier J, Moughaizel M, Aguesse A, Billon-Crossouard S, Fall F, Durand M, Dagher E, Krempf M, Croyal M (2018) Plasma lipidomic analysis reveals strong similarities between lipid fingerprints in human, hamster and mouse compared to other animal species. Sci Rep 8:15893

    PubMed  PubMed Central  Google Scholar 

  • Kang JD, Kim H, Jin L, Guo Q, Cui CD, Li WX, Kim S, Kim JS, Yin XJ (2017) Apancreatic pigs cloned using Pdx1-disrupted fibroblasts created via TALEN-mediated mutagenesis. Oncotarget 8:115480–115489

    PubMed  PubMed Central  Google Scholar 

  • Kannel WB, Wolf PA, Benjamin EJ, Levy D (1998) Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 82:2N–9N

    CAS  PubMed  Google Scholar 

  • Kato T, Yasue T, Shoji Y, Shimabukuro S, Ito Y, Goto S, Motooka S, Uno T, Ojima A (1987) Angiographic difference in coronary artery of man, dog, pig, and monkey. Acta Pathol Jpn 37:361–373

    CAS  PubMed  Google Scholar 

  • Kawanishi K, Dhar C, Do R, Varki N, Gordts P, Varki A (2019) Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci U S A 116:16036–16045

  • Kemter E, Wolf E (2018) Recent progress in porcine islet isolation, culture and engraftment strategies for xenotransplantation. Curr Opin Organ Transplant 23:633–641

    CAS  PubMed  Google Scholar 

  • Kemter E, Cohrs CM, Schafer M, Schuster M, Steinmeyer K, Wolf-van Buerck L, Wolf A, Wuensch A, Kurome M, Kessler B, Zakhartchenko V, Loehn M, Ivashchenko Y, Seissler J, Schulte AM, Speier S, Wolf E (2017) INS-eGFP transgenic pigs: a novel reporter system for studying maturation, growth and vascularisation of neonatal islet-like cell clusters. Diabetologia 60:1152–1156

    CAS  PubMed  Google Scholar 

  • Kemter E, Denner J, Wolf E (2018) Will genetic engineering carry xenotransplantation of pig islets to the clinic? Curr Diab Rep 18:103

    PubMed  Google Scholar 

  • Kenny HC, Abel ED (2019) Heart failure in type 2 diabetes mellitus. Circ Res 124:121–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khairoun M, van den Heuvel M, van den Berg BM, Sorop O, de Boer R, van Ditzhuijzen NS, Bajema IM, Baelde HJ, Zandbergen M, Duncker DJ, Rabelink TJ, Reinders ME, van der Giessen WJ, Rotmans JI (2015) Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance. PLoS One 10:e0121555

    PubMed  PubMed Central  Google Scholar 

  • Kim JB (2016) Dynamic cross talk between metabolic organs in obesity and metabolic diseases. Exp Mol Med 48:e214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Whitener RL, Peiris H, Gu X, Chang CA, Lam JY, Camunas-Soler J, Park I, Bevacqua R, Tellez K, Quake SR, Lakey JRT, Bottino R, Ross PJ, Kim SK (2019) Molecular and genetic regulation of pig pancreatic islet cell development. bioRxiv 717090

  • Kimmelstiel P, Wilson C (1936) Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 12(83–98):87

    Google Scholar 

  • Kitada M, Ogura Y, Koya D (2016) Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renovasc Dis 9:279–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiziltoprak H, Tekin K, Inanc M, Goker YS (2019) Cataract in diabetes mellitus. World J Diabetes 10:140–153

    PubMed  PubMed Central  Google Scholar 

  • Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schurmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Muller TD, Tschop MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162

    PubMed  Google Scholar 

  • Kleinwort KJH, Amann B, Hauck SM, Hirmer S, Blutke A, Renner S, Uhl PB, Lutterberg K, Sekundo W, Wolf E, Deeg CA (2017) Retinopathy with central oedema in an INS (C94Y) transgenic pig model of long-term diabetes. Diabetologia 60:1541–1549

    CAS  PubMed  Google Scholar 

  • Klymiuk N, Seeliger F, Bohlooly YM, Blutke A, Rudmann DG, Wolf E (2016) Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol Pathol 44:346–357

    CAS  PubMed  Google Scholar 

  • Ko SH, Park YM, Yun JS, Cha SA, Choi EK, Han K, Han E, Lee YH, Ahn YB (2018) Severe hypoglycemia is a risk factor for atrial fibrillation in type 2 diabetes mellitus: Nationwide population-based cohort study. J Diabetes Complications 32:157–163

    PubMed  Google Scholar 

  • Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, Maeda S, Kadowaki T, Butte AJ (2012) Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A 109:7049–7054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong LL, Wu H, Cui WP, Zhou WH, Luo P, Sun J, Yuan H, Miao LN (2013) Advances in murine models of diabetic nephropathy. J Diabetes Res 2013:797548

    PubMed  PubMed Central  Google Scholar 

  • Kong S, Ruan J, Xin L, Fan J, Xia J, Liu Z, Mu Y, Yang S, Li K (2016) Multitransgenic minipig models exhibiting potential for hepatic insulin resistance and pancreatic apoptosis. Mol Med Rep 13:669–680

    CAS  PubMed  Google Scholar 

  • Koopmans SJ, Mroz Z, Dekker R, Corbijn H, Ackermans M, Sauerwein H (2006) Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: effects of metformin at isoenergetic feeding in a type 2-like diabetic pig model. Metabolism 55:960–971

    CAS  PubMed  Google Scholar 

  • Koopmans SJ, VanderMeulen J, Wijdenes J, Corbijn H, Dekker R (2011) The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs. BMC Biochem 12:25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopel J, Pena-Hernandez C, Nugent K (2019) Evolving spectrum of diabetic nephropathy. World J Diabetes 10:269–279

    PubMed  PubMed Central  Google Scholar 

  • Kronenberg F, Utermann G (2013) Lipoprotein(a): resurrected by genetics. J Intern Med 273:6–30

    CAS  PubMed  Google Scholar 

  • Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E (2013) Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 13:43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurome M, Kessler B, Wuensch A, Nagashima H, Wolf E (2015) Nuclear transfer and transgenesis in the pig. Methods Mol Biol 1222:37–59

    CAS  PubMed  Google Scholar 

  • Langin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A, Mihalj M, Panelli A, Issl L, Ying J, Fresch AK, Buttgereit I, Mokelke M, Radan J, Werner F, Lutzmann I, Steen S, Sjoberg T, Paskevicius A, Qiuming L, Sfriso R, Rieben R, Dahlhoff M, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Klett K, Hinkel R, Kupatt C, Falkenau A, Reu S, Ellgass R, Herzog R, Binder U, Wich G, Skerra A, Ayares D, Kind A, Schonmann U, Kaup FJ, Hagl C, Wolf E, Klymiuk N, Brenner P, Abicht JM (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564:430–433

    PubMed  Google Scholar 

  • Laron Z, Ginsberg S, Lilos P, Arbiv M, Vaisman N (2006) Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity). Clin Endocrinol 65:114–117

    CAS  Google Scholar 

  • Larsen MO, Wilken M, Gotfredsen CF, Carr RD, Svendsen O, Rolin B (2002) Mild streptozotocin diabetes in the Gottingen minipig. A novel model of moderate insulin deficiency and diabetes. Am J Physiol Endocrinol Metab 282:E1342–E1351

    CAS  PubMed  Google Scholar 

  • Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S (2018) Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol 6:69–80

    PubMed  Google Scholar 

  • Lee K (1986) Swine as animal models in cardiovascular research. Swine Biomed Res:1481–1498

  • Lee MS, Song KD, Yang HJ, Solis CD, Kim SH, Lee WK (2012) Development of a type II diabetic mellitus animal model using Micropig(R). Lab Anim Res 28:205–208

    PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim D, Oh YS, Jun HS (2019) Lysophosphatidic acid signaling in diabetic nephropathy. Int J Mol Sci 20:2850

  • Lehrke M, Marx N (2017) Diabetes mellitus and heart failure. Am J Med 130:S40–S50

    CAS  PubMed  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    CAS  PubMed  Google Scholar 

  • Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM (2019) Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 73:e87–e120

    CAS  PubMed  Google Scholar 

  • Li Z, Woollard JR, Wang S, Korsmo MJ, Ebrahimi B, Grande JP, Textor SC, Lerman A, Lerman LO (2011) Increased glomerular filtration rate in early metabolic syndrome is associated with renal adiposity and microvascular proliferation. Am J Physiol Renal Physiol 301:F1078–F1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Wang Q, Zhang Y, Li D, Yang D, Wei S, Su L, Ye T, Zheng X, Peng K, Zhang L, Zhang Y, Yang Y, Ma S (2016a) A novel swine model of spontaneous hypertension with sympathetic hyperactivity responds well to renal denervation. Am J Hypertens 29:63–72

    CAS  PubMed  Google Scholar 

  • Li Y, Fuchimoto D, Sudo M, Haruta H, Lin QF, Takayama T, Morita S, Nochi T, Suzuki S, Sembon S, Nakai M, Kojima M, Iwamoto M, Hashimoto M, Yoda S, Kunimoto S, Hiro T, Matsumoto T, Mitsumata M, Sugitani M, Saito S, Hirayama A, Onishi A (2016b) Development of human-like advanced coronary plaques in low-density lipoprotein receptor knockout pigs and justification for statin treatment before formation of atherosclerotic plaques. J Am Heart Assoc 5:e002779

    PubMed  PubMed Central  Google Scholar 

  • Lim RR, Grant DG, Olver TD, Padilla J, Czajkowski AM, Schnurbusch TR, Mohan RR, Hainsworth DP, Walters EM, Chaurasia SS (2018) Young Ossabaw pigs fed a western diet exhibit early signs of diabetic retinopathy. Invest Ophthalmol Vis Sci 59:2325–2338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Cao C, Tao C, Ye R, Dong M, Zheng Q, Wang C, Jiang X, Qin G, Yan C, Li K, Speakman JR, Wang Y, Jin W, Zhao J (2017) Cold adaptation in pigs depends on UCP3 in beige adipocytes. J Mol Cell Biol 9:364–375

    CAS  PubMed  Google Scholar 

  • List EO, Sackmann-Sala L, Berryman DE, Funk K, Kelder B, Gosney ES, Okada S, Ding J, Cruz-Topete D, Kopchick JJ (2011) Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR−/−) mouse. Endocrine Rev 32:356–386

    CAS  Google Scholar 

  • Liu JS, Hebrok M (2017) All mixed up: defining roles for beta-cell subtypes in mature islets. Genes Dev 31:228–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang Z, Yin W, Li Q, Cai M, Zhang C, Xiao J, Hou H, Li H, Zu X (2007) Severe insulin resistance and moderate glomerulosclerosis in a minipig model induced by high-fat/ high-sucrose/ high-cholesterol diet. Exp Anim 56:11–20

    CAS  PubMed  Google Scholar 

  • Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P (2015) INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Asp Med 42:3–18

    CAS  Google Scholar 

  • Liu Y, Yuan J, Xiang L, Zhao Y, Niu M, Dai X, Chen H (2017) A high sucrose and high fat diet induced the development of insulin resistance in the skeletal muscle of Bama miniature pigs through the Akt/GLUT4 pathway. Exp Anim 66:387–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longo N, Frigeni M, Pasquali M (2016) Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 1863:2422–2435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Zhang Q, Pu LJ, Peng WH, Yan XX, Wang LJ, Chen QJ, Zhu ZB, Michel JB, Shen WF (2008) Dysregulation of matrix metalloproteinases and their tissue inhibitors is related to abnormality of left ventricular geometry and function in streptozotocin-induced diabetic minipigs. Int J Exp Pathol 89:125–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Zhou H, Ni M, Wang X, Busuttil R, Kupiec-Weglinski J, Zhai Y (2016) Innate immune regulations and liver ischemia-reperfusion injury. Transplantation 100:2601–2610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Ye S, Scalzo RL, Reusch JEB, Greyson CR, Schwartz GG (2017) Metformin prevents ischaemic ventricular fibrillation in metabolically normal pigs. Diabetologia 60:1550–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludvigsen TP, Kirk RK, Christoffersen BO, Pedersen HD, Martinussen T, Kildegaard J, Heegaard PM, Lykkesfeldt J, Olsen LH (2015a) Gottingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals. J Transl Med 13:312

    PubMed  PubMed Central  Google Scholar 

  • Ludvigsen TP, Kirk RK, Christoffersen BØ, Pedersen HD, Martinussen T, Kildegaard J, Heegaard PMH, Lykkesfeldt J, Olsen LH (2015b) Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals. J Transl Med 13:312

    PubMed  PubMed Central  Google Scholar 

  • Maile LA, Busby WH, Gollahon KA, Flowers W, Garbacik N, Garbacik S, Stewart K, Nichols T, Bellinger D, Patel A, Dunbar P, Medlin M, Clemmons D (2014) Blocking ligand occupancy of the alphaVbeta3 integrin inhibits the development of nephropathy in diabetic pigs. Endocrinology 155:4665–4675

    PubMed  PubMed Central  Google Scholar 

  • Marques IP, Alves D, Santos T, Mendes L, Santos AR, Lobo C, Durbin M, Cunha-Vaz J (2019) Multimodal imaging of the initial stages of diabetic retinopathy: different disease pathways in different patients. Diabetes 68:648–653

    CAS  PubMed  Google Scholar 

  • Marso SP, House JA, Klauss V, Lerman A, Margolis P, Leon MB, Global V-I (2010) Diabetes mellitus is associated with plaque classified as thin cap fibroatheroma: an intravascular ultrasound study. Diab Vasc Dis Res 7:14–19

    PubMed  Google Scholar 

  • Martinez DA, Guhl DJ, Stanley WC, Vailas AC (2003) Extracellular matrix maturation in the left ventricle of normal and diabetic swine. Diabetes Res Clin Pract 59:1–9

    CAS  PubMed  Google Scholar 

  • Matoba K, Takeda Y, Nagai Y, Kawanami D, Utsunomiya K, Nishimura R (2019) Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci 20

  • Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, Kobayashi T, Yamaguchi T, Sumazaki R, Herzenberg LA, Nakauchi H (2013) Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A 110:4557–4562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunari H, Kobayashi T, Watanabe M, Umeyama K, Nakano K, Kanai T, Matsuda T, Nagaya M, Hara M, Nakauchi H, Nagashima H (2014) Transgenic pigs with pancreas-specific expression of green fluorescent protein. J Reprod Dev 60:230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGaugh S, Schwartz TS (2017) Here and there, but not everywhere: repeated loss of uncoupling protein 1 in amniotes. Biol Lett 13:

  • Meier M, Haller H (2004) Diabetic nephropathy - current concepts in early diagnosis and treatment of diabetic microvascular complications. Herz 29:496–503

    PubMed  Google Scholar 

  • Meng Q, Makinen VP, Luk H, Yang X (2013) Systems biology approaches and applications in obesity, diabetes, and cardiovascular diseases. Curr Cardiovasc Risk Rep 7:73–83

    PubMed  Google Scholar 

  • Mesangeau D, Laude D, Elghozi JL (2000) Early detection of cardiovascular autonomic neuropathy in diabetic pigs using blood pressure and heart rate variability. Cardiovasc Res 45:889–899

    CAS  PubMed  Google Scholar 

  • Middleton S (2010) Porcine ophthalmology. Vet Clin North Am Food Anim Pract 26:557–572

    PubMed  Google Scholar 

  • Mitasikova M, Lin H, Soukup T, Imanaga I, Tribulova N (2009) Diabetes and thyroid hormones affect connexin-43 and PKC-epsilon expression in rat heart atria. Physiological research 58:211–217

    CAS  PubMed  Google Scholar 

  • Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47:445–449

    CAS  PubMed  Google Scholar 

  • Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB (2016) Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J 16:e132–e141

    PubMed  PubMed Central  Google Scholar 

  • Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson Iii RN, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mokelke EA, Hu Q, Song M, Toro L, Reddy HK, Sturek M (2003) Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise. J Appl Physiol (1985) 95:1179–1193

    CAS  Google Scholar 

  • Mokelke EA, Dietz NJ, Eckman DM, Nelson MT, Sturek M (2005) Diabetic dyslipidemia and exercise affect coronary tone and differential regulation of conduit and microvessel K+ current. Am J Physiol Heart Circ Physiol 288:H1233–H1241

    CAS  PubMed  Google Scholar 

  • Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5:150–159

    CAS  PubMed  Google Scholar 

  • Nauck MA, Meier JJ (2016) The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 4:525–536

    CAS  PubMed  Google Scholar 

  • Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M (2010) Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med 60:300–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52

    CAS  PubMed  Google Scholar 

  • Nyengaard JR (1999) Stereologic methods and their application in kidney research. J Am Soc Nephrol 10:1100–1123

    CAS  PubMed  Google Scholar 

  • Obrochta KM, Krois CR, Campos B, Napoli JL (2015) Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FoxO1. J Biol Chem 290:7259–7268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odeh M, Oliven A, Bassan H (1990) Transient atrial fibrillation precipitated by hypoglycemia. Ann Emerg Med 19:565–567

    CAS  PubMed  Google Scholar 

  • Olivares AM, Althoff K, Chen GF, Wu S, Morrisson MA, DeAngelis MM, Haider N (2017) Animal models of diabetic retinopathy. Curr Diab Rep 17:93–93

    PubMed  PubMed Central  Google Scholar 

  • Ozawa M, Himaki T, Ookutsu S, Mizobe Y, Ogawa J, Miyoshi K, Yabuki A, Fan J, Yoshida M (2015) Production of cloned miniature pigs expressing high levels of human apolipoprotein(a) in plasma. PLoS One 10:e0132155

    PubMed  PubMed Central  Google Scholar 

  • Palee S, Weerateerangkul P, Surinkeaw S, Chattipakorn S, Chattipakorn N (2011) Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart. Exp Physiol 96:778–789

    CAS  PubMed  Google Scholar 

  • Panasevich MR, Meers GM, Linden MA, Booth FW, Perfield JW 2nd, Fritsche KL, Wankhade UD, Chintapalli SV, Shankar K, Ibdah JA, Rector RS (2018) High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Am J Physiol Endocrinol Metab 314:E78–e92

    CAS  PubMed  Google Scholar 

  • Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Susztak K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JJ, Kim SH, Kim MA, Chae IH, Choi DJ, Yoon CH (2019) Effect of Hyperglycemia on myocardial perfusion in diabetic porcine models and humans. J Korean Med Sci 34:e202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507

  • Pollreisz A, Schmidt-Erfurth U (2010) Diabetic cataract-pathogenesis, epidemiology and treatment. J Ophthalmol 2010:608751

    PubMed  PubMed Central  Google Scholar 

  • Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Group ESCSD (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200

    PubMed  Google Scholar 

  • Pontoglio M (2000) Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J Am Soc Nephrol 11(Suppl 16):S140–S143

    CAS  PubMed  Google Scholar 

  • Popper B (2014) Impact of the genetic background on the development of diabetes-associated renal lesions in GIPRdn transgenic diabetic mice. Doctoral thesis, LMU Munich

  • Ramirez AH, Schildcrout JS, Blakemore DL, Masys DR, Pulley JM, Basford MA, Roden DM, Denny JC (2011) Modulators of normal electrocardiographic intervals identified in a large electronic medical record. Heart Rhythm 8:271–277

    PubMed  Google Scholar 

  • Rapacz J, Hasler-Rapacz J, Taylor KM, Checovich WJ, Attie AD (1986) Lipoprotein mutations in pigs are associated with elevated plasma cholesterol and atherosclerosis. Science 234:1573–1577

    CAS  PubMed  Google Scholar 

  • Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remuzzi G, Bertani T (1990) Is glomerulosclerosis a consequence of altered glomerular permeability to macromolecules? Kidney Int 38:384–394

    CAS  PubMed  Google Scholar 

  • Ren Z, Wang Y, Ren Y, Zhang Z, Gu W, Wu Z, Chen L, Mou L, Li R, Yang H, Dai Y (2017) Enhancement of porcine intramuscular fat content by overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase in skeletal muscle. Sci Rep 7:43746

    PubMed  PubMed Central  Google Scholar 

  • Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Goke B, Pfeifer A, Wanke R, Wolf E (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59:1228–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renner S, Romisch-Margl W, Prehn C, Krebs S, Adamski J, Goke B, Blum H, Suhre K, Roscher AA, Wolf E (2012) Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced beta-cell mass. Diabetes 61:2166–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, Wunsch A, Kessler B, Kurome M, Bahr A, Klymiuk N, Krebs S, Puk O, Nagashima H, Graw J, Blum H, Wanke R, Wolf E (2013) Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62:1505–1511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renner S, Blutke A, Streckel E, Wanke R, Wolf E (2016a) Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models. J Pathol 238:345–358

    CAS  PubMed  Google Scholar 

  • Renner S, Dobenecker B, Blutke A, Zols S, Wanke R, Ritzmann M, Wolf E (2016b) Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86:406–421

    CAS  PubMed  Google Scholar 

  • Renner S, Blutke A, Dobenecker B, Dhom G, Muller TD, Finan B, Clemmensen C, Bernau M, Novak I, Rathkolb B, Senf S, Zols S, Roth M, Gotz A, Hofmann SM, Hrabe de Angelis M, Wanke R, Kienzle E, Scholz AM, DiMarchi R, Ritzmann M, Tschop MH, Wolf E (2018) Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Gottingen minipigs. Mol Metab 16:180–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renner S, Martins AS, Streckel E, Braun-Reichhart C, Backman M, Prehn C, Klymiuk N, Bahr A, Blutke A, Landbrecht-Schessl C, Wunsch A, Kessler B, Kurome M, Hinrichs A, Koopmans SJ, Krebs S, Kemter E, Rathkolb B, Nagashima H, Blum H, Ritzmann M, Wanke R, Aigner B, Adamski J, Hrabe de Angelis M, Wolf E (2019) Mild maternal hyperglycemia in INS (C93S) transgenic pigs causes impaired glucose tolerance and metabolic alterations in neonatal offspring. Dis Model Mech

  • Reno CM, Daphna-Iken D, Chen YS, VanderWeele J, Jethi K, Fisher SJ (2013) Severe hypoglycemia-induced lethal cardiac arrhythmias are mediated by sympathoadrenal activation. Diabetes 62:3570–3581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieger A, Kemter E, Kumar S, Popper B, Aigner B, Wolf E, Wanke R, Blutke A (2016) Missense mutation of POU domain class 3 transcription factor 3 in Pou3f3L423P mice causes reduced nephron number and impaired development of the thick ascending limb of the loop of henle. PloS One 11:e0158977

    PubMed  PubMed Central  Google Scholar 

  • Roberts AC, Porter KE (2013) Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res 10:472–482

    PubMed  Google Scholar 

  • Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456

  • Roden M (2015) Future of muscle research in diabetes: a look into the crystal ball. Diabetologia 58:1693–1698

    CAS  PubMed  Google Scholar 

  • Romacho T, Elsen M, Rohrborn D, Eckel J (2014) Adipose tissue and its role in organ crosstalk. Acta Physiologica (Oxf) 210:733–753

    CAS  Google Scholar 

  • Ruan J, Zhang Y, Yuan J, Xin L, Xia J, Liu N, Mu Y, Chen Y, Yang S, Li K (2016) A long-term high-fat, high-sucrose diet in Bama minipigs promotes lipid deposition and amyotrophy by up-regulating the myostatin pathway. Mol Cell Endocrinol 425:123–132

    CAS  PubMed  Google Scholar 

  • Rukstalis JM, Habener JF (2009) Neurogenin3: a master regulator of pancreatic islet differentiation and regeneration. Islets 1:177–184

    PubMed  Google Scholar 

  • Saito S, Teshima Y, Fukui A, Kondo H, Nishio S, Nakagawa M, Saikawa T, Takahashi N (2014) Glucose fluctuations increase the incidence of atrial fibrillation in diabetic rats. Cardiovasc Res 104:5–14

    CAS  PubMed  Google Scholar 

  • Saleheen D, Haycock PC, Zhao W, Rasheed A, Taleb A, Imran A, Abbas S, Majeed F, Akhtar S, Qamar N, Zaman KS, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Mallick NH, Ishaq M, Rasheed SZ, Memon FU, Mahmood K, Ahmed N, Frossard P, Tsimikas S, Witztum JL, Marcovina S, Sandhu M, Rader DJ, Danesh J (2017) Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes Endocrinol 5:524–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samdani P, Singhal M, Sinha N, Tripathi P, Sharma S, Tikoo K, Rao KV, Kumar D (2015) A comprehensive inter-tissue crosstalk analysis underlying progression and control of obesity and diabetes. Scientific Rep 5:12340

    Google Scholar 

  • Sas KM, Karnovsky A, Michailidis G, Pennathur S (2015) Metabolomics and diabetes: analytical and computational approaches. Diabetes 64:718–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider MR, Wolf E (2016) Genetically engineered pigs as investigative and translational models in dermatology. Br J Dermatol 174:237–239

    CAS  PubMed  Google Scholar 

  • Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69:2131–2147

    CAS  PubMed  Google Scholar 

  • Shapiro MD, Tavori H, Fazio S (2018) PCSK9: From basic science discoveries to clinical trials. Circ Res 122:1420–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheets TP, Park KE, Park CH, Swift SM, Powell A, Donovan DM, Telugu BP (2018) Targeted mutation of NGN3 gene disrupts pancreatic endocrine cell development in pigs. Sci Rep 8:3582

    PubMed  PubMed Central  Google Scholar 

  • Shimatsu Y, Horii W, Nunoya T, Iwata A, Fan J, Ozawa M (2016) Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer. Exp Anim 65:37–43

    CAS  PubMed  Google Scholar 

  • Shirakawa J, De Jesus DF, Kulkarni RN (2017) Exploring inter-organ crosstalk to uncover mechanisms that regulate beta-cell function and mass. Eur J Clin Nutr 71:896–903

  • Shu X, Nelbach L, Ryan RO, Forte TM (2010) Apolipoprotein A-V associates with intrahepatic lipid droplets and influences triglyceride accumulation. Biochim Biophys Acta 1801:605–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D (2000) Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 86:309–312

    CAS  PubMed  Google Scholar 

  • Sivieri R, Veglio M, Chinaglia A, Scaglione P, Cavallo-Perin P (1993) Prevalence of QT prolongation in a type 1 diabetic population and its association with autonomic neuropathy. The Neuropathy Study Group of the Italian Society for the Study of Diabetes. Diabet Med 10:920–924

    CAS  PubMed  Google Scholar 

  • Skold BH, Getty R, Ramsey FK (1966) Spontaneous atherosclerosis in the arterial system of aging swine. Am J Vet Res 27:257–273

    CAS  PubMed  Google Scholar 

  • Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW (2009) Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol 296:H428–H434

    CAS  PubMed  Google Scholar 

  • Sorop O, van den Heuvel M, van Ditzhuijzen NS, de Beer VJ, Heinonen I, van Duin RW, Zhou Z, Koopmans SJ, Merkus D, van der Giessen WJ, Danser AH, Duncker DJ (2016) Coronary microvascular dysfunction after long-term diabetes and hypercholesterolemia. Am J Physiol Heart Circ Physiol 311:H1339–H1351

    PubMed  Google Scholar 

  • Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, Octavia Y, van Duin RWB, Stam K, van Geuns RJ, Wielopolski PA, Krestin GP, van den Meiracker AH, Verjans R, van Bilsen M, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ (2018) Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res 114:954–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sowton AP, Griffin JL, Murray AJ (2019) Metabolic profiling of the diabetic heart: toward a richer picture. Front Physiol 10:639

    PubMed  PubMed Central  Google Scholar 

  • Stanley WC, Hall JL, Hacker TA, Hernandez LA, Whitesell LF (1997) Decreased myocardial glucose uptake during ischemia in diabetic swine. Metabolism 46:168–172

    CAS  PubMed  Google Scholar 

  • Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110

    CAS  PubMed  Google Scholar 

  • Stoy J, Steiner DF, Park SY, Ye H, Philipson LH, Bell GI (2010) Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord 11:205–215

    PubMed  PubMed Central  Google Scholar 

  • Streckel E, Braun-Reichhart C, Herbach N, Dahlhoff M, Kessler B, Blutke A, Bahr A, Ubel N, Eddicks M, Ritzmann M, Krebs S, Goke B, Blum H, Wanke R, Wolf E, Renner S (2015) Effects of the glucagon-like peptide-1 receptor agonist liraglutide in juvenile transgenic pigs modeling a pre-diabetic condition. J Transl Med 13:73

    PubMed  PubMed Central  Google Scholar 

  • Suchy F, Nakauchi H (2018) Interspecies chimeras. Curr Opin Genet Dev 52:36–41

    CAS  PubMed  Google Scholar 

  • Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino-Masu K, Osawa M, Nakauchi H, Kageyama R, Matsui A (2004) Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet 36:83–87

    CAS  PubMed  Google Scholar 

  • Sun YV, Hu YJ (2016) Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet 93:147–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Susan-Resiga D, Girard E, Kiss RS, Essalmani R, Hamelin J, Asselin MC, Awan Z, Butkinaree C, Fleury A, Soldera A, Dory YL, Baass A, Seidah NG (2017) The proprotein convertase subtilisin/kexin type 9-resistant R410S low density lipoprotein receptor mutation: a novel mechanism causing familial hypercholesterolemia. J Biol Chem 292:1573–1590

    CAS  PubMed  Google Scholar 

  • Szabo G (2015) Gut-liver axis in alcoholic liver disease. Gastroenterology 148:30–36

    CAS  PubMed  Google Scholar 

  • Tang X, Wang G, Liu X, Han X, Li Z, Ran G, Li Z, Song Q, Ji Y, Wang H, Wang Y, Ouyang H, Pang D (2015) Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochem Biophys Res Commun 465:507–511

    CAS  PubMed  Google Scholar 

  • Targher G, Lonardo A, Byrne CD (2018) Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol 14:99–114

    CAS  PubMed  Google Scholar 

  • Topf F, Schvartz D, Gaudet P, Priego-Capote F, Zufferey A, Turck N, Binz P-A, Fontana P, Wiederkehr A, Finamore F, Xenarios I, Goodlett D, Kussmann M, Bergsten P, Sanchez J-C (2013) The Human Diabetes Proteome Project (HDPP): from network biology to targets for therapies and prevention. Transl Proteomics 1:3–11

    Google Scholar 

  • Tritschler S, Theis FJ, Lickert H, Bottcher A (2017) Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 6:974–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu CF, Hsu CY, Lee MH, Jiang BH, Guo SF, Lin CC, Yang TS (2018) Growing pigs developed different types of diabetes induced by streptozotocin depending on their transcription factor 7-like 2 gene polymorphisms. Lab Anim Res 34:185–194

    PubMed  PubMed Central  Google Scholar 

  • Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706

    CAS  PubMed  Google Scholar 

  • Umeyama K, Nakajima M, Yokoo T, Nagaya M, Nagashima H (2017) Diabetic phenotype of transgenic pigs introduced by dominant-negative mutant hepatocyte nuclear factor 1alpha. J Diabetes Complications 31:796–803

    PubMed  Google Scholar 

  • van den Heuvel M, Sorop O, Koopmans SJ, Dekker R, de Vries R, van Beusekom HM, Eringa EC, Duncker DJ, Danser AH, van der Giessen WJ (2012) Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol 302:H85–H94

    PubMed  Google Scholar 

  • van Ditzhuijzen NS, van den Heuvel M, Sorop O, Rossi A, Veldhof T, Bruining N, Roest S, Ligthart JMR, Witberg KT, Dijkshoorn ML, Nieman K, Mulder MT, Zijlstra F, Duncker DJ, van Beusekom HMM, Regar E (2016) Serial coronary imaging of early atherosclerosis development in fast-food-fed diabetic and nondiabetic swine. JACC Basic Transl Sci 1:449–460

    PubMed  PubMed Central  Google Scholar 

  • Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D (2010) Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 20:1–7

    CAS  PubMed  Google Scholar 

  • Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297:E271–E288

    CAS  PubMed  Google Scholar 

  • Wang X, Garrett MR (2017) Nephron number, hypertension, and CKD: physiological and genetic insight from humans and animal models. Physiol Genomics 49:180–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SQ, Li D, Yuan Y (2019) Long-term moderate intensity exercise alleviates myocardial fibrosis in type 2 diabetic rats via inhibitions of oxidative stress and TGF-beta1/Smad pathway. J Physiol Sci 69:861–873

  • Wanke R, Wolf E, Brem G, Hermanns W (2001) Role of podocyte damage in the pathogenesis of glomerulosclerosis and tubulointerstitial lesions: findings in the growth hormone transgenic mouse model of progressive nephropathy. Verh Dtsch Ges Pathol 85:250–256

    CAS  PubMed  Google Scholar 

  • Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, Chow W, Eory L, Finlayson HA, Flicek P, Girón CG, Griffin DK, Hall R, Hannum G, Hourlier T, Howe K, Hume DA, Izuogu O, Kim K, Koren S, Liu H, Manchanda N, Martin FJ, Nonneman DJ, O’Connor RE, Phillippy AM, Rohrer GA, Rosen BD, Rund LA, Sargent CA, Schook LB, Schroeder SG, Schwartz AS, Skinner BM, Talbot R, Tseng E, Tuggle CK, Watson M, Smith TPL, Archibald AL (2019) An improved pig reference genome sequence to enable pig genetics and genomics research. bioRxiv 668921

  • Wei J, Ouyang H, Wang Y, Pang D, Cong NX, Wang T, Leng B, Li D, Li X, Wu R, Ding Y, Gao F, Deng Y, Liu B, Li Z, Lai L, Feng H, Liu G, Deng X (2012) Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J 279:91–99

    CAS  PubMed  Google Scholar 

  • Whitfield J (2003) Fat pigs ape obese humans. Nature Publishing Group

  • Whitham M, Febbraio MA (2016) The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov 15:719–729

    CAS  PubMed  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214

    CAS  PubMed  Google Scholar 

  • Wolf G (2004) New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34:785–796

    CAS  PubMed  Google Scholar 

  • Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23:27–38

    CAS  PubMed  Google Scholar 

  • Wolf E, Kemter E, Klymiuk N, Reichart B (2019) Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Animal Front 9:13–20

    Google Scholar 

  • Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U S A 100:11624–11629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Patel KP, Rozanski GJ (1996) Metabolic basis of decreased transient outward K+ current in ventricular myocytes from diabetic rats. Am J Physiol 271:H2190–H2196

    CAS  PubMed  Google Scholar 

  • Xu Y, Lu L, Greyson C, Lee J, Gen M, Kinugawa K, Long CS, Schwartz GG (2003) Deleterious effects of acute treatment with a peroxisome proliferator-activated receptor-gamma activator in myocardial ischemia and reperfusion in pigs. Diabetes 52:1187–1194

    CAS  PubMed  Google Scholar 

  • Yacoub R, Campbell KN (2015) Inhibition of RAS in diabetic nephropathy. Int J Nephrol Renovasc Dis 8:29–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata K (2003) Regulation of pancreatic beta-cell function by the HNF transcription network: lessons from maturity-onset diabetes of the young (MODY). Endocr J 50:491–499

    CAS  PubMed  Google Scholar 

  • Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Bell GI et al (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458

    CAS  PubMed  Google Scholar 

  • Yamagishi S, Matsui T (2016) Pathologic role of dietary advanced glycation end products in cardiometabolic disorders, and therapeutic intervention. Nutrition 32:157–165

    CAS  PubMed  Google Scholar 

  • Yamagishi S, Nakamura N, Suematsu M, Kaseda K, Matsui T (2015) Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 21(Suppl 1):S32–S40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Risacher SL, Shen L, Saykin AJ (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform  19:1370-1381

  • Yang Y, Wang K, Wu H, Jin Q, Ruan D, Ouyang Z, Zhao B, Liu Z, Zhao Y, Zhang Q, Fan N, Liu Q, Guo S, Bu L, Fan Y, Sun X, Li X, Lai L (2016) Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering. J Mol Cell Biol 8:174–177

    PubMed  Google Scholar 

  • Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, Botting RA, Popescu DM, Loudon KW, Vento-Tormo R, Stephenson E, Cagan A, Farndon SJ, Del Castillo V-HM, Guzzo C, Richoz N, Mamanova L, Aho T, Armitage JN, Riddick ACP, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Maxwell PH, Lindsay S, Warren AY, Stewart GD, Sebire N, Coleman N, Haniffa M, Teichmann SA, Clatworthy M, Behjati S (2018) Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science:361, 594–599

  • Yuan F, Guo L, Park KH, Woollard JR, Taek-Geun K, Jiang K, Melkamu T, Zang B, Smith SL, Fahrenkrug SC, Kolodgie FD, Lerman A, Virmani R, Lerman LO, Carlson DF (2018) Ossabaw pigs with a PCSK9 gain-of-function mutation develop accelerated coronary atherosclerotic lesions: a novel model for preclinical studies. J Am Heart Assoc 7:e006207

  • Zalewski A, Macphee C (2005) Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 25:923–931

    CAS  PubMed  Google Scholar 

  • Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, Zhu S, Li Z, Li R, Shi C, Wang S, Zhang Q, Tang Z, Wang L, Li K, Fei JF, Lan G (2019) Development and genome sequencing of a laboratory-inbred miniature pig facilitates study of human diabetic disease. iScience 19:162–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, Breyer MD, Harris RC (2006) Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 17:2664–2669

    CAS  PubMed  Google Scholar 

  • Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, Cao C, Hambly C, Qin G, Yao J, Song R, Jia Q, Wang X, Li Y, Zhang N, Piao Z, Ye R, Speakman JR, Wang H, Zhou Q, Wang Y, Jin W, Zhao J (2017) Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci U S A 114:E9474–E9482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong P, Quan D, Huang Y, Huang H (2017) CaMKII activation promotes cardiac electrical remodeling and increases the susceptibility to arrhythmia induction in high-fat diet-fed mice with hyperlipidemia conditions. J Cardiovasc Pharmacol 70:245–254

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Peter Cowan, Fellow of the Center for Advanced Studies (CAS) of LMU Munich, for careful editing of the manuscript.

Funding

This work was supported by the German Center for Diabetes Research (DZD; 82DZD00802, 82DZD0043G, 82DZD0044G, 82DZD0015G to EW, SR and EK), the German Center for Cardiovascular Research (DZHK; 81X2600210, 81X2600204, 81X3600208, 81X2600249 to SC, 81Z0600207 to DM), the Deutsche Forschungsgemeinschaft (TRR127 to EW and EK and DFG DE 719/7-1/SPP2127 to CD), the European Union (iNanoBIT grant agreement no. 760986 to EK and EW), the Bayerische Forschungsstiftung (AZ-1247-16 VasOP to EK and EW), the LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative (to SC), the Förderprogramm für Forschung und Lehre (FöFöLe; 962 to SC), the Heinrich-and-Lotte-Mühlfenzl Stiftung (to SC), the ERA-NET on Cardiovascular Diseases (ERA-CVD; 01KL1910 to SC), the Netherlands Cardiovascular Research Initiative, an initiative with financial support from the Dutch Heart Foundation (CVON2014-11, RECONNECT to DM), and the Corona-Foundation (S199/10079/2019 to SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Wolf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renner, S., Blutke, A., Clauss, S. et al. Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 380, 341–378 (2020). https://doi.org/10.1007/s00441-019-03158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03158-9

Keywords

Navigation