Skip to main content
Log in

Identification of calretinin-expressing retinal ganglion cells projecting to the mouse superior colliculus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In mice, retinal ganglion cells (RGCs), which consist of around 30 subtypes, exclusively transmit retinal information to the relevant brain systems through parallel visual pathways. The superior colliculus (SC) receives the vast majority of this information from several RGC subtypes. The objective of the current study is to identify the types of calretinin (CR)-expressing RGCs that project to the SC in mice. To label RGCs, we performed CR immunoreactivity in the mouse retina after injections of fluorescent dye, dextran into mouse SC. Subsequently, the neurons double-labeled for dextran and CR were iontophoretically injected with the lipophilic dye, DiI, to characterize the detailed morphological properties of these cells. The analysis of various morphological parameters, including dendritic arborization, dendritic field size and stratification, indicated that, of the ten different types of CR-expressing RGCs in the retina, the double-labeled cells consisted of at least eight types of RGCs that projected to the SC. These cells tended to have small-medium field sizes. However, except for dendritic field size, the cells did not exhibit consistent characteristics for the other morphometric parameters examined. The combination of a tracer and single-cell injections after immunohistochemistry for a particular molecule provided valuable data that confirmed the presence of distinct subtypes of RGCs within multiple-labeled RGCs that projected to specific brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadlou M, Heimel JA (2015) Preference for concentric orientations in the mouse superior colliculus. Nat Commun 6:6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badea TC, Nathans J (2004) Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 480:331–351

    Article  PubMed  Google Scholar 

  • Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berson DM (2008) Retinal ganglion cell types and their central projections. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses: a comprehensive reference, Vision 1, vol 1. Academic Press, San Diego, pp 491–520

    Chapter  Google Scholar 

  • Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat's retina. J Physiol 240:397–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaway EM (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cang J, Feldheim DA (2013) Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36:51–77

    Article  CAS  PubMed  Google Scholar 

  • Chen SK, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheron G, Gall D, Servais L, Dan B, Maex R, Schiffmann SN (2004) Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J Neurosci 24:434–441

    Article  CAS  PubMed  Google Scholar 

  • Coombs J, van der List D, Wang GY, Chalupa LM (2006) Morphological properties of mouse retinal ganglion cells. Neuroscience 140:123–136

    Article  CAS  PubMed  Google Scholar 

  • Dhande OS, Huberman AD (2014) Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol 24:133–142

    Article  CAS  PubMed  Google Scholar 

  • Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis EM, Gauvain G, Sivyer B, Murphy GJ (2016) Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J Neurophysiol 116:602–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrow K, Masland RH (2011) Physiological clustering of visual channels in the mouse retina. J Neurophysiol 105:1516–1530

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K, Yonehara K et al (2013) Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78:325–338

    Article  CAS  PubMed  Google Scholar 

  • Gall D, Roussel C, Susa I, D'Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiffmann SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23:9320–9327

    Article  CAS  PubMed  Google Scholar 

  • Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Young WG, Bloom F (2000) Comparative cytoarchitectonic atlas of the C57BL/6 and 129/SV: mouse brains. Elsevier Science, New York

    Google Scholar 

  • Hofbauer A, Dräger UC (1985) Depth segregation of retinal ganglion cells projecting to mouse superior colliculus. J Comp Neurol 234:465–474

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, Baccus SA, Barres BA (2008) Architectures and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:425–438

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA (2009) Genetic identification of an on-off direction-selective retinal ganglion cell subtype reveals layer-specific subcortical map of posterior motion. Neuron 62:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Feldheim DA (2018) The mouse superior colliculus: an emerging model for studying circuit formation and function. Front Neural Circuits 12:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    Article  CAS  PubMed  Google Scholar 

  • Jonathan W, Hiroshi H (2017) Visual system architecture. In: Pablo A (ed) Handbook of visual optics, volume one: fundamentals and eye optics. Fundamentals. CRC Press, Boca Raton, pp 159–180

    Google Scholar 

  • Kao YH, Sterling P (2003) Matching neural morphology to molecular expression: single cell injection following immunostaining. J Neurocytol 32:245–251

    Article  PubMed  Google Scholar 

  • Kay JN, De la Huerta I, Kim IJ, Zhnag Y, Yamagata M, Chu MW, Meister M, Sanes JR (2011) Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci 31:7753–7762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IJ, Zhang Y, Meister M, Sanes JR (2010) Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed by transgenic markers. J Neurosci 30:1452–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452:478–482

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Soto F, Kerschensteiner D (2015) An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. elife. https://doi.org/10.7554/eLife.08025

  • Kim TJ, Jeon CJ (2006) Morphological classification of parvalbumin-containing retinal ganglion cells in mouse: single-cell injection after immunocytochemistry. Invest Ophthalmol Vis Sci 47:2757–2764

    Article  PubMed  Google Scholar 

  • Kong JH, Fish DR, Rockhill RL, Masland RH (2005) Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489:293–310

    Article  PubMed  Google Scholar 

  • Krieger B, Qiao M, Rousso DL, Sanes JR, Meister M (2017) Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures. PLoS One 12(7):e0180091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon OJ, Lee ES, Jeon CJ (2014) Density and types of calretinin-containing retinal ganglion cells in rabbit. Neuroscience 278:343–353

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Lee JY, Jeon CJ (2010) Types and density of calretinin-containing retinal ganglion cells in mouse. Neurosci Res 66:141–150

    Article  CAS  PubMed  Google Scholar 

  • Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X, Li Y, Ng L, Oh SW, Ouellette B, Royall JJ, Stoecklin M, Wang Q, Zeng H, Sanes JR, Harris JA (2017) Diverse central projection patterns of retinal ganglion cells. Cell Rep 18:2058–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378

    Article  PubMed  Google Scholar 

  • Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12:1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Schwartz GW (2016) Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina. J Neurosci 36:3208–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL, Barres BA, Huberman AD, Feller MG (2011) Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures in motion processing. J Neurosci 31:8760–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockhill RL, Euler T, Masland RH (2000) Spatial order within but not between types of retinal neurons. Proc Natl Acad Sci U S A 97:2303–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodieck RW (1998) The first steps in seeing. Sinauer Associates, Sunderland

    Google Scholar 

  • Roska B, Meister M (2014) The retina dissects the visual scene in distinct features. In: Werner JS, Chalupa LM (eds) The new visual neuroscience, retinal mechanisms and processes. MIT Press, Cambridge, pp 163–182

    Google Scholar 

  • Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38:221–246

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Cheron G, Lohof A, d’Alcantara P, Meyer M, Parmentier M, Schurmans S (1999) Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci U S A 96:5257–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmolesky M (1995-2005) The primary visual cortex. In: Kolb H, Fernandez E, Nelson R (eds) Webvision, The Organization of the Retina and Visual System (Internet). University of Utah Health Sciences Center, Salt Lake City

    Google Scholar 

  • Schwaller B (2014) Calretinin: from a “simple” Ca(2+) buffer to a multifunctional protein implicated in many biological processes. Front Neuroanat. eCollection 2014. https://doi.org/10.3389/fnana.2014.00003

  • Stein BE, Wallace MW, Stanford TR, Jiang W (2002) Cortex governs multisensory integration in the midbrain. Neuroscientist 8:306–314

    Article  PubMed  Google Scholar 

  • Sun W, Li N, He S (2002) Large-scale morphological survey of rat retinal ganglion cells. Vis Neurosci 19:483–493

    Article  PubMed  Google Scholar 

  • Trenholm S, Johnson K, Li X, Smith RG, Awatramani GB (2011) Parallel mechanisms encode direction in the retina. Neuron 71:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Chheda S, Bloomfield SA (2009) Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 512:664–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J (2010) Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J Neurosci 30:16573–16584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Masland RH (1994) Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J Neurosci 14:5267–5280

    Article  CAS  PubMed  Google Scholar 

  • Yi CW, Yu SH, Lee ES, Lee JG, Jeon CJ (2012) Types of parvalbumin-containing retinotectal ganglion cells in mouse. Acta Histochem Cytochem 45:201–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kim IJ, Sanes JR, Meister M (2012) The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc Natl Acad Sci U S A 109:E2391–E2398

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cactus Communications for proofreading the manuscript.

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2016R1D1A1A09918427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jin Jeon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures involving animals were in accordance with the ethical standards of our institution and were approved by the animal rights committee at Kyungpook National University, Deagu, South Korea (permission NO. 2015-0104). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, ES., Lee, JY., Kim, G.H. et al. Identification of calretinin-expressing retinal ganglion cells projecting to the mouse superior colliculus. Cell Tissue Res 376, 153–163 (2019). https://doi.org/10.1007/s00441-018-2964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2964-1

Keywords

Navigation