Skip to main content

Advertisement

Log in

Mechanobiology of mice cervix: expression profile of mechano-related molecules during pregnancy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

There is a known reciprocation between the chronic exertion of force on tissue and both increased tissue density (e.g., bone) and hypertrophy (e.g., heart). This can also be seen in cervical tissue where the excessive gravitational forces associated with multiple fetal pregnancies promote preterm births. While there is a well-known regulation of cervical remodeling (CR) by sex steroid hormones and growth factors, the role of mechanical force is less appreciated. Using proteome-wide technology, we previously provided evidence for the presence of and alteration in mechano-related signaling molecules in the mouse cervix during pregnancy. Here, we profile the expression of select cytoskeletal factors (filamin-A, gelsolin, vimentin, actinin-1, caveolin-1, transgelin, keratin-8, profilin-1) and their associated signaling molecules [focal adhesion kinase (FAK) and the Rho GTPases CDC42, RHOA, and RHOB] in cervices of pregnant mice by real-time PCR and confocal immunofluorescence microscopy. Messenger RNA and protein levels increased for each of these 12 factors, except for 3 (keratin-8, profilin-1, RHOA) that decreased during the course of pregnancy and this corresponded with an increase in gravitational force exerted by the fetus on the cervix. We therefore conclude that size or weight of the growing fetus likely plays a key role in CR through mechanotransduction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albinsson S, Nordström I, Hellstrand P (2004) Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J Biol Chem 279 (33):34849–34855

  • Aspden RM (1988) Collagen organisation in the cervix and its relation to mechanical function. Coll Relat Res 8 (2):103–112

  • Avraham HK, Lee TH, Koh Y, Kim TA, Jiang S, Sussman M, Samarel AM, Avraham S (2003) Vascular endothelial growth gactor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 278:36661–36668

    Article  CAS  PubMed  Google Scholar 

  • Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9:364–370

    Article  CAS  PubMed  Google Scholar 

  • Bender F, Montoya M, Monardes V, Leyton L, Quest AF (2002) Caveolae and caveolae-like membrane domains in cellular signaling and disease: identification of downstream targets for the tumor suppressor protein caveolin-1. Biol Res 35:151–167

    Article  CAS  PubMed  Google Scholar 

  • Burger LL, Sherwood OD (1998) Relaxin increases the accumulation of new epithelial and stromal cells in the rat cervix during the second half of pregnancy. Endocrinology 139:3984–3995

    Article  CAS  PubMed  Google Scholar 

  • Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525

    Article  CAS  PubMed  Google Scholar 

  • Buyandelger B, Mansfield C, Knoll R (2014) Mechano-sensing in heart failure. Pflügers Arch 466:1093–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nature Rev Mol Cell Biol 5:601–613

    Article  CAS  Google Scholar 

  • Chauhan SP, Scardo JA, Hayes E, Abuhamad AZ, Berghella V (2010) Twins: prevalence, problems, and preterm births. Am J Obstet Gynecol 203:305–315

    Article  PubMed  Google Scholar 

  • Choudkroun G, Hajjar R, Fry S, del Monte F, Haq S, Guerrero JL, Picard M, Rosenzweig A, Force T (1999) Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J Clin Invest 104:391–398

    Article  Google Scholar 

  • Cowin SG, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6:313–325

    Article  Google Scholar 

  • Downward J (1990) The Ras superfamily of small GTP-binding proteins. Trends Biochem Sci 15:496–472

    Article  Google Scholar 

  • Dufty AM, Clobert J, Moller AP (2002) Hormones, developmental plasticity and adaptation. Trends Ecol Evolut 17:190–196

    Article  Google Scholar 

  • Ding Z, Bae YH, Roy P (2012) Molecular insights on context-specific role of profiling-1 in cell migration. Cell Adhes Migr 6:442–449

    Article  Google Scholar 

  • Donnelly SM, Nguyen BT, Rhyne S, Estes J, Jesmin S, Mowa CN (2013) Vascular endothelial growth factor induces growth of uterine cervix and immune cell recruitment in mice. J Endocrinol 217:83–94

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Ohashi K, Mashiko T, Kondo H, Mizuno K (2016) Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol Biol Cell 27:954–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nature Rev Mol Cell Biol (11):793–805

  • Giang Ho TT, Merajver SD, Lapiere CM, Nusgens BV, Deroanne CF (2008) RhoA-GDP regulates RhoB protein stability. J Biol Chem 283:21588–21598

    Article  CAS  Google Scholar 

  • Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM (1996) The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134:971–983

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  • Holt R, Timmons BC, Akgul Y, Akins ML, Mahendroo M (2011) The molecular mechanisms of cervical ripening differ between term and preterm birth. Endocrinol 152:1036–1046

    Article  CAS  Google Scholar 

  • Hu Y, Lu S, Szeto KW, Sun J, Wang Y, Lasheras JC, Chien S (2014) FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep. https://doi.org/10.1038/srep06024

  • Jorge S, Chang S, Barzilai JJ, Leppert P, Segers JH (2014) Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod Sci 21:1093–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnoub AE, Der CJ (2000-2013) Rho family GTPases and cellular transformation. In: Madame curie bioscience database [internet]. Landes Bioscience, Austin. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6594/

  • Lappalainen P, Drubin DG (1997) Coflin promotes rapid actin filament turnover in vivo. Nature 388:78–82

    Article  CAS  PubMed  Google Scholar 

  • Lawson CD, Burridge K (2014) The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. https://doi.org/10.4161/sgtp.27958

  • Leppert PC (1995) Anatomy and physiology of cervical ripening. Clin Obstet Gynecol 38(2):267–79

  • Leppert PC, Jayes FL, Segars JH (2014) The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int doi. https://doi.org/10.1155/2014/783289

  • Lewis AH, Cui AF, McDonald MF, Grand J (2017) Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels. Cell Rep 19:2572–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Gallant C, Malek S, Morgan KG (2007) Focal adhesion signaling is required for myometrial ERK activation and contractile phenotype switch before labor. J Cell Biochem 100:129–140

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Je HD, Malek S, Morgan KG (2004) Role of ERK1/2 in uterine contractility and preterm labor in rats. Am J Physiol Regul Integr Comp Physiol 287:R328–R335

    Article  CAS  PubMed  Google Scholar 

  • Loschke F, Seltmann K, Bouameur JE, Magin TM (2015) Regulation of keratin network organization. Curr Opin Cell Biol 32:56–65

    Article  CAS  PubMed  Google Scholar 

  • Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendroo M (2012) Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction 143:429–438

    Article  CAS  PubMed  Google Scholar 

  • Mowa CN, Li T, Jesmin S, Folkesson HG, Usip SE, Papka RE, Hou G (2008) Delineation of VEGF-regulated genes and functions in the cervix of pregnant rodents by DNA microarray analysis. Reprod Biol and Endocrinol 6:64–74

    Article  CAS  Google Scholar 

  • Myers KM, Paskaleva AP, House M, Socrate S (2008) Mechanical and biochemical properties of human cervical tissue. Acta Biomater 4:104–116

    Article  CAS  PubMed  Google Scholar 

  • Myers KM, Socrate S, Paskaleva A, House M (2010) A Study of the anisotropy and tension/compression behavior of human cervical tissue. J Biomech Eng 132 (2):021003

  • Myers KM, Feltovich H, Mazza E, Vink J, Bajka M, Wapner RJ, Hall TJ, House M (2015) The mechanical role of the cervix in pregnancy. J Biomech 48 (9):1511-1523

  • Nakamura F, Song M, Hartwig JH, Stossel TP (2015) Documentation and localization of force-mediated filamin A domain perturbations in moving cells. Nat Commun 5:46–56

    Google Scholar 

  • Nott JP, Bonney EA, Pickering JD, Simpson NAB (2016) The structure and function of the cervix during pregnancy. Transl Res in Anatomy 2:1–7

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  CAS  PubMed  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenburg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell (3):241–254

  • Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA, Romer LH, Chen CS (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174:277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provenzano P, Keely P (2011) Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124:1195–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Z, Buehler MJ, Kreplak L (2010) A multi-scale approach to understand the mechanobiology of intermediate filaments. J Biomech 43:15–22

    Article  PubMed  Google Scholar 

  • Quest AF, Lobos-González L, Nuñez S, Sanhueza C, Fernández JG, Aguirre A, Rodríguez D, Leyton L, Torres V (2013) The caveolin-1 connection to cell death and survival. Curr Mol Med 13:266–281

    Article  CAS  PubMed  Google Scholar 

  • Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS (2007) Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction 134:327–340

    Article  CAS  PubMed  Google Scholar 

  • Schaller MD, Mildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14:1680–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaepfer DD, Jones KC, Hunter T (1998) Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18:2571–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe J, Donnelly SM, Jesmin S, Leppert P, Mowa CN (2014) A proteomic profile of cervical remodeling in mice during early and late pregnancy. J Steroid Horm Sci 5:123–132

    Google Scholar 

  • Shekhar S, Pernier J, Carlier MF (2016) Regulators of actin filament barbed ends at a glance. J Cell Sci 129:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Shihata WA, Mitchell DL, Andrews KL, Chin-Dusting JPF (2016) Caveolae: a role in endothelial inflammation and mechanotransduction? Front Physiol 7:628–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Shynlova O, Tsui P, Jaffer S, Lye SJ (2009) Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol 144S:S2–S10

    Article  CAS  Google Scholar 

  • Stanley R, Ohashi T, Mowa C (2015) Postpartum cervical repair in mice: a morphological characterization and potential role for angiogenic factors. Cell Tissue Res 362:253–263

    Article  CAS  PubMed  Google Scholar 

  • Stanley RL, Ohashi T, Gordon J, Mowa CN (2018) A proteomic profile of postpartum cervical repair in mice. J Mol Endocrinol 60:17–28

    Article  CAS  PubMed  Google Scholar 

  • Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C (2017) Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 130(9):1612–1624

  • Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274 (47):33179–33182

  • Sun HW, Tong SL, He J, Wang Q, Zou L, Ma SJ, Tan HY, Luo JF, Wu HX (2007) RhoA and RhoC -siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World J Gastroenterol 13:3517–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC (2015) Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod 92:25–35

    Article  CAS  PubMed  Google Scholar 

  • Timmons B, Akins M, Mahendroo M (2010) Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metabol 21:353–361

    Article  CAS  Google Scholar 

  • Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Word R, Li XH, Hnat M, Carrick K (2007) Dynamics of cervical remodeling during pregnancy and parturition: Mechanisms and current concepts. Seminars in Reproductive Medicine 25 (1):069–079

  • Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163:583–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Morgan KG, Jones CJ, Tribe RM, Taggart MJ (2008) Myometrial mechano-adaptation during pregnancy: implications for smooth muscle plasticity and remodeling. J Cell Mol Med 12:1360–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Jiang H, Kim M, Vink J, Cremers S, Paik D, Wapner R, Mahendroo M, Myers K (2014) Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS One. https://doi.org/10.1371/journal.pone.0112391

  • Yoshida K, Mahendroo M, Vink J, Wapner R, Myers K (2016) Material properties of mouse cervical tissue in normal gestation. Acta Biomater 36:195–209

    Article  PubMed  Google Scholar 

  • Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidan A, Nordstrom I, Albinsson S, Malmqvist U, Sward K, Hellstrand P (2003) Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors. Am J Cell Physiol 284:C1387–C1396

    Article  CAS  Google Scholar 

  • Zhang Y, Akins ML, Murari K, Xi J, Li MJ, Luby-Phelps K, Mahendroo M, Li X (2012) A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc Natl Acad Sci U S A 109:12878–12883

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XH, Laschinger C, Arora P, Szaszi K, Kapus A, McCulloch CA (2007) Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway. J Cell Sci 120:1801–1809

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Ohashi T, Anumba D, Mowa CN (2013) Estrogen and hypoxia regulate expression of vascular endothelial growth factor and its receptors in uterine cervix of mice, which are localized in multiple cells of the tissue in mice and human. FASEB J. https://doi.org/10.1096/fasebj.27.1_supplement.734.6

Download references

Funding

This work was funded by the Appalachian State University Office of Student Research and the College of Arts and Sciences, Department of Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chishimba Nathan Mowa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, J., Mowa, C.N. Mechanobiology of mice cervix: expression profile of mechano-related molecules during pregnancy. Cell Tissue Res 376, 443–456 (2019). https://doi.org/10.1007/s00441-018-02983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-02983-8

Keywords

Navigation