Skip to main content

Advertisement

Log in

Odontoblasts induced from mesenchymal cells of murine dental papillae in three-dimensional cell culture

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In an organ culture system under a three-dimensional microenvironment that provides the conditions needed for odontoblast differentiation, a row of odontoblasts can be induced (Kikuchi et al. 1996, 2001). Therefore, in a newly designed three-dimensional cell culture system that fulfils the conditions necessary for odontoblast differentiation (Kikuchi et al. 2002), we examined whether dental papilla cells in rat mandibular incisors could differentiate into tubular dentine-forming cells. In our previously established organ culture system, CM-Dil-labeled cells that were microinjected into isolated dental papillae were replaced by a row of odontoblasts. In a three-dimensional cell culture system, which consists of two kinds of type I collagen in the upper layer over multi-layered cells seeded onto collagen containing Matrigel in the lower layer and which acts as a structural meshwork, dental papilla cells were incubated as multi-layered cells in an artificial extracellular matrix (ECM). The cells aggregated to form a cell mass and invaginated as a cell mass into the ECM. The cells also extended fine fibrillar processes into the ECM. With regard to invagination, the proteolytic activities of matrix metalloproteinase-2 (MMP-2)/membrane type 1-matrix metalloproteinase (MT 1-MMP) were observed on the outer multi-layers of cells within a cell mass adjacent to the ECM. The cell mass progressively shrank to about one-half to one-third of its original diameter and was organized as a tissue surrounded by a newly secreted ECM, like dental pulp-dentine. The cells adjacent to the secreted ECM were constructed as a row of polarized columnar cells. They extended slender processes into the new ECM, which is characteristic of tubular matrix. Dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP 1) genes, which are specific for odontoblast differentiation, were expressed in an aggregated cell mass where tubular matrix-forming cells were induced. Furthermore, the tubular matrix became mineralized under prolonged culture. These results imply that the putative progenitor cells/stem cells residing in dental papillae can differentiate into odontoblasts under appropriate conditions in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–i
Fig. 2a, b
Fig. 3a–j
Fig. 4a–i
Fig. 5a, b
Fig. 6a–i
Fig. 7a, b
Fig. 8a–h

Similar content being viewed by others

References

  • Alliot-Licht A, Hurtrel D, Gregoire M (2001) Characterization of α-smooth muscle actin-positive cells in mineralised human dental pulp cultures. Arch Oral Biol 46:221–228

    Article  CAS  PubMed  Google Scholar 

  • Arciniegas E, Sutton AB, Allen TD, Schor AM (1992) Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J Cell Sci 103:521–529

    Google Scholar 

  • Bahary N, Zon LI (2001) Endothelium—chicken soup for the endoderm. Science 294:530–531

    Article  CAS  PubMed  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Google Scholar 

  • Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  CAS  PubMed  Google Scholar 

  • Birkedal-Hansen H (1995) Proteolytic remodelling of extracellular matrix. Curr Opin Cell Biol 7:728–735

    CAS  PubMed  Google Scholar 

  • Boström K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    CAS  Google Scholar 

  • Braut A, Kollar EJ, Mina M (2003) Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Col 1a1–2.3-GFP transgene. Int J Dev Biol 47:281–292

    CAS  PubMed  Google Scholar 

  • Bronckers ALJJ, D’Souza RN, Butler WT, Lyaruu DM, van Dijk S, Gay S, Wöltgen JHM (1993) Dentin sialoprotein: biosynthesis and developmental appearance in rat tooth germs in comparison with amelogenins, osteocalcin and collagen type-I. Cell Tissue Res 272:237–247

    CAS  PubMed  Google Scholar 

  • Brooks PC, Strömblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85:683–693

    CAS  PubMed  Google Scholar 

  • Caron C, Xue J, Bartlett JD (1998) Expression and localization of membrane type 1 matrix metalloproteinase in tooth tissues. Matrix Biol 17:501–511

    Article  CAS  PubMed  Google Scholar 

  • Chen WT, Wang JY (1999) Specialized surface protrusions of invasive cells, invadopodia and lamelliopodia, have differential MT 1-MMP, MMP-2, and TIMP-2 localization. Ann N Y Acad Sci 878:361–371

    CAS  PubMed  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Davis GE, Bayless KJ, Mavila A (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec 268:252–275

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  • D’Souza RN, Bachman T, Baumgardner KR, Butler WT, Litz M (1995) Characterization of cellular responses involved in reparative dentinogenesis in rat molars. J Dent Res 74:707–709

    Google Scholar 

  • D’Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M (1997) Gene expression patterns of murine dentin matrix protein 1 (Dmp 1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 12:2040–2049

    Google Scholar 

  • Egeblads M, Werb Z (2000) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Google Scholar 

  • Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  CAS  PubMed  Google Scholar 

  • Feng JQ, Huang H, Lu Y, Ye L, Xie Y, Tsutsui TW, Kunieda T, Castranio T, Scott G, Bonewald LB, Mishina Y (2003) The dentin matrix protein 1(Dmp 1) is specifically expressed in mineralised, but not soft, tissue during development. J Dent Res 82:776–780

    CAS  PubMed  Google Scholar 

  • Fitzgerald M, Chiego DJ Jr, Heys DR (1990) Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 35:707–715

    CAS  PubMed  Google Scholar 

  • Galvez BG, Matias-Roman S, Yanez-Mo M, Sanchez-Madrid F, Arroyo AG (2002) ECM regulates MT 1-MMP localization with β1 or αVβ3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J Cell Biol 159:509–521

    Google Scholar 

  • George A, Sabsay B, Simonian PAL, Veis A (1993) Characterization of a novel dentin matrix acid phosphoprotein. J Biol Chem 268:12624–12630

    CAS  PubMed  Google Scholar 

  • Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  CAS  PubMed  Google Scholar 

  • Gilles C, Polette M, Coraux C, Tournier J-M, Meneguzzi G, Munaut C, Volders L, Rousselle P, Birembaut P, Foidart J-M (2001) Contribution of MT1-MMP and of human laminin-5 γ2 chain degradation to mammary epithelial cell migration. J Cell Sci 114:2967–2976

    Google Scholar 

  • Gronthos S, Mankani N, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Google Scholar 

  • Heikinheimo K, Salo T (1995) Expression of basement-membrane type-IV collagen and type-IV collagenases (MMP-2 and MMP-9) in human fetal teeth. J Dent Res 74:1226–1234

    CAS  PubMed  Google Scholar 

  • Heuer AH, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH, Wheeler AP, Veis A, Caplan AI (1992) Innovative materials processing strategies: a biomimetic approach. Science 255:1098–1105

    CAS  PubMed  Google Scholar 

  • Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H (1999) MT 1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92

    CAS  PubMed  Google Scholar 

  • Hotary KB, Yana I, Sabeh F, Li X-Y, Holmbeck K, Birkedal-Hansen H, Allen ED, Hiraoka N, Weiss SJ (2002) Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195:295–308

    Article  CAS  PubMed  Google Scholar 

  • Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ (2003) Membrane type 1 matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114:33–45

    Google Scholar 

  • Hurley JH, Wendland B (2002) Endocytosis: driving membranes around the bend. Cell 111:143–145

    CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene GD, Ortiz-Gonzalez XR, Reyes M, Lenvilk T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie GM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Cohen RL, Chambers DA (2002) Collagen modulates gene activation of plasminogen activator system molecules. Exp Cell Res 280:244–255

    Article  CAS  PubMed  Google Scholar 

  • Jontell M, Okiji T, Dahlgren U, Bergenholtz (1998) Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med 9:179–200

    CAS  PubMed  Google Scholar 

  • Kikuchi H, Sawada T, Yanagisawa T (1996) Effects of a functional agar surface on in vitro dentinogenesis induced in proteolytically isolated, agar-coated dental papillae in rat mandibular incisors. Arch Oral Biol 41:871–883

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi H, Amano H, Yamada S (2001) Putative role of basement membrane for dentinogenesis in the mesenchyme of murine dental papillae in vitro. Cell Tissue Res 303:93–107

    Google Scholar 

  • Kikuchi H, Suzuki K, Sakai N, Yamada S (2002) Odontoblasts inducible from dental papilla cells in three-dimensional cell culture. J Dent Res (Abstr) (in press)

  • Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V (2000) Role of cell surface metalloprotease MT 1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624

    Google Scholar 

  • Koyama E, Wu C, Shimo T, Pacifici M (2003) Chick limbs with mouse teeth: an effective in vivo culture system for tooth germ development and analysis. Dev Dyn 226:149–154

    Article  PubMed  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    CAS  PubMed  Google Scholar 

  • Lafleur MA, Handsley MM, Knäuper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115:3427–3438

    CAS  PubMed  Google Scholar 

  • Lesot H, Smith AJ, Tziafas D, Begue-Kirm C, Cassidy N, Ruch JV (1994) Biological active molecules and dental tissue repair: a comparative review of reactionary and reparative dentinogenesis with the induction of odontoblasts differentiation in vitro. Cell Mat 4:199–218

    CAS  Google Scholar 

  • MacDougall M, Simmons D, Luna X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 272:835–842

    Article  CAS  PubMed  Google Scholar 

  • Mukouyama Y, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705

    CAS  PubMed  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    PubMed  Google Scholar 

  • Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A (2001) Differentiation of embryonic mesenchymal cells to odontoblast-like cells by over-expression of dentin matrix protein 1. Proc Natl Acad Sci U S A 98:4516–4521

    Article  CAS  PubMed  Google Scholar 

  • Okada A, Tomasetto C, Lutz Y, Bellocq J-P, Rio M-C, Basset P (1997) Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A. J Cell Biol 137:67–77

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jackoniuk I, Anderson SM, Li B, Pickel J, Mckay R, Nadal-Ginard B, Bodine DV, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–704

    CAS  PubMed  Google Scholar 

  • Palosaari H, Ding Y, Larmas M, Sorsa T, Bartlett JD, Salo T, Tjäderhane L (2002) Regulation and interactions of MT1-MMP and MMP-20 in human odontoblasts and pulp tissue in vitro. J Dent Res 81:354–359

    Google Scholar 

  • Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, Nagai N, Butler WT (2002) The expression of dentin sialophosphoprotein gene in bone. J Dent Res 81:392–394

    CAS  PubMed  Google Scholar 

  • Randall LE, Hall RC (2002) Temperospatial expression of matrix metalloproteinases 1, 2, 3, and 9 during early tooth development. Connect Tissue Res 43:205–211

    CAS  PubMed  Google Scholar 

  • Ritchie H, Hou H, Veis A, Butler WT (1994) Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem 269:3698–3702

    CAS  PubMed  Google Scholar 

  • Ruangpanit N, Price JT, Holmbeck K, Birkedal-Hansen H, Guenzler V, Huang X, Chan D, Bateman JF, Thompson EW (2002) MT1-MMP-dependent and -independent regulation of gelatinase A activation in long-term, ascorbate-treated fibroblast cultures: regulation by fibrillar collagen. Exp Cell Res 271:109–118

    Article  Google Scholar 

  • Ruch JV, Lesot H, Begue-Kirm C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68

    CAS  PubMed  Google Scholar 

  • Ryan PL, Foty RA, Kohn J, Steinberg MS (2001) Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell substratum adhesivity. Proc Natl Acad Sci U S A 98:4323–4327

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370:61–65

    PubMed  Google Scholar 

  • Schiro JA, Chan BMC, Roswit WT, Kassner PD, Pentland AP, Hemier ME, Eisen AZ, Kupper TS (1991) Integrin α2β1 (VAL-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 67:403–410

    CAS  PubMed  Google Scholar 

  • Schor AM, Canfield AE, Sutton AB, Arciniegas E, Allen TD (1995) Pericyte differentiation. Clin Orthop 313:81–91

    PubMed  Google Scholar 

  • Shiba H, Mouri Y, Komatsuzawa H, Ouhara K, Takeda K, Sugai M, Kinane D, Kurihara H (2003) Macrophage inflammatory protein-3α and β-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochem Biophys Res Commun 306:867–871

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A, Nakakura-Oshima K, Noda T, Maeda T, Oshima H (2000) Responses of immunocompetent cells in the dental pulp to replantation during the regeneration process in rat molars. Cell Tissue Res 302:221–233

    CAS  PubMed  Google Scholar 

  • Song W, Jackson K, McGuire PG (2000) Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev Biol 227:606–617

    Article  CAS  PubMed  Google Scholar 

  • Stahl PJ, Felsen D (2001) Transforming growth factor-β, basement membrane, and epithelial-mesenchymal transdifferentiation. Am J Pathol 159:1187–1192

    PubMed  Google Scholar 

  • Thesleff I, Nieminen P (1996) Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol 8:844–850

    CAS  PubMed  Google Scholar 

  • Thyberg J, Hultgardh-Nilsson A (1994) Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res 276:263–271

    Google Scholar 

  • Tjäderhane L, Salo T, Larjava H, Larmas M, Ovarall CM (1998) A novel organ culture method to study the function of human odontoblasts in vitro: gelatinase expression by odontoblasts is differentially regulated by TGF-β1. J Dent Res 77:1486–1496

    PubMed  Google Scholar 

  • Tsiper MV, Yurchenco PD (2002) Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 115:1005–1015

    Google Scholar 

  • Tsonis PA (2002) Regenerative biology: the emerging field of tissue repair and restoration. Differentiation 70:397–409

    Article  CAS  PubMed  Google Scholar 

  • Tucker AS, Matthews KL, Sharpe PT (1998) Transformation of tooth type induced by inhibition of BMP signalling. Science 282:1136–1138

    Article  CAS  PubMed  Google Scholar 

  • Tziafas D, Panagiotakopoulos N, Komnenou A (1995) Immunolocalization of fibronectin during the early response of dog dental pulp to demineralized dentine or calcium hydroxide-containing cement. Arch Oral Biol 40:23–31

    Article  CAS  PubMed  Google Scholar 

  • Veis A, Tsay T-G, Kanwar Y (1984) An immunological study of the localization of dentin phosphophoryns in the tooth. INSERM 125:223–232

    Google Scholar 

  • Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult haematopoietic stem cells. Science 297:2256–2259

    Article  CAS  PubMed  Google Scholar 

  • Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442

    CAS  PubMed  Google Scholar 

  • Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X (2001) Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27:201–204

    Article  CAS  PubMed  Google Scholar 

  • Yamamura T (1985) Differentiation of pulpal cells and inductive influences of various matrices with reference to pulp wound healing. J Dent Res 64 (Special Issue):530–540

    PubMed  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) FIK1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Article  CAS  PubMed  Google Scholar 

  • Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81:695–700

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Larry W. Fisher at NIH/NIDCR for kindly providing DSP antiserum and to Dr. K. Sano for helping with data analysis of back-scattered electron microscopy and EDXA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, H., Suzuki, K., Sakai, N. et al. Odontoblasts induced from mesenchymal cells of murine dental papillae in three-dimensional cell culture. Cell Tissue Res 317, 173–185 (2004). https://doi.org/10.1007/s00441-004-0882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0882-x

Keywords

Navigation