Skip to main content

Advertisement

Log in

Genetic architecture of retinoic-acid signaling-associated ocular developmental defects

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Ocular developmental anomalies are among the most common causes of severe visual impairment in newborns (combined incidence 1–2:10,000). They comprise a wide range of inborn errors of eye development with a spectrum of overlapping phenotypes and they are frequently associated with extraocular malformations, neuropsychomotor developmental delay and/or intellectual disabilities. Many studies from model organisms have demonstrated the role of retinoic acid (RA) during organogenesis, including eye development, and have revealed the wide spectrum of malformations that can arise from defective RA signaling. However, genes coding for homeobox proteins and morphogenetic factors were implicated in anomalies of ocular development long before genes coding for RA-signaling proteins. The purpose of this review is to discuss current knowledge about the highly complex genetic architecture of RA-signaling-associated ocular developmental anomalies in humans. Despite less than a dozen genes identified thus far, all steps of RA-signaling, from vitamin A transport to target cells to transcriptional activation of RA targets, have been implicated. Furthermore, the majority of these genetic disorders are associated with both dominant and recessive inheritance patterns and a wide spectrum of ocular malformations, which can dominate the phenotype or represent one of many features. Although some genotype–phenotype correlations are described, in many cases, the variability of clinical expression cannot be accounted for by the genotype alone. This observation and the large number of unsolved cases suggest that the relationship between RA signaling and eye development deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abouzeid H, Favez T, Schmid A, Agosti C, Youssef M, Marzouk I, El Shakankiry N, Bayoumi N, Munier FL, Schorderet DF (2014) Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families. Hum Mutat 35:949–953

    Article  CAS  PubMed  Google Scholar 

  • Abu-Abed S, Dollé P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW (2017) Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet 91:616–622

    Article  CAS  PubMed  Google Scholar 

  • Abu-Abed S, MacLean G, Fraulob V et al (2002) Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech Dev 110:173–177

    Article  CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS (2013) Mutations in ALDH1A3 cause microphthalmia: Mutations in ALDH1A3 cause microphthalmia. Clinical Genetics 84:128–131. https://doi.org/10.1111/cge.12184

    Article  CAS  PubMed  Google Scholar 

  • Alward WL, Semina EV, Kalenak JW, Héon E, Sheth BP, Stone EM, Murray JC (1998) Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am J Ophthalmol 125:98–100

    Article  CAS  PubMed  Google Scholar 

  • Amengual J, Golczak M, Palczewski K, von Lintig J (2012) Lecithin: retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. J Biol Chem 287:24216–24227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K, Von Lintig J (2014a) STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet 23:5402–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K, Von Lintig J (2014b) STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet 23:5402–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JNC, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP et al (2016) Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet 48:189–194

    Article  CAS  PubMed  Google Scholar 

  • Berry FB, Lines MA, Oas JM, Footz T, Underhill DA, Gage PJ, Walter MA (2006) Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld–Rieger syndrome and anterior segment dysgenesis. Hum Mol Genet 15:905–919

    Article  PubMed  Google Scholar 

  • Berry DC, Croniger CM, Ghyselinck NB, Noy N (2012a) Transthyretin blocks retinol uptake and cell signaling by the holo-retinol-binding protein receptor STRA6. Mol Cell Biol 32:3851–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry DC, O’Byrne SM, Vreeland AC, Blaner WS, Noy N (2012b) Cross talk between signaling and vitamin A transport by the retinol-binding protein receptor STRA6. Mol Cell Biol 32:3164–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biesalski HK, Frank J, Beck SC, Heinrich F, Illek B, Reifen R, Gollnick H, Seeliger MW, Wissinger B, Zrenner E (1999) Biochemical but not clinical vitamin A deficiency results from mutations in the gene for retinol binding protein. Am J Clin Nutr 69:931–936

    Article  CAS  PubMed  Google Scholar 

  • Borges AS, Susanna JR, Carani JC, Betinjane AJ, Alward WL, Stone EM, Sheffield VC, Nishimura DY (2002) Genetic analysis of PITX2 and FOXC1 in Rieger syndrome patients from Brazil. J Glaucoma 11:51–56

    Article  PubMed  Google Scholar 

  • Bouillet P, Sapin V, Chazaud C, Messaddeq N, Décimo D, Dollé P, Chambon P (1997) Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mech Dev 63:173–186

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Knight D, Smith C et al (2006) Retinoid signaling determines germ cell fate in mice. Science 312:596–600. https://doi.org/10.1126/science.1125691

    Article  CAS  PubMed  Google Scholar 

  • Carss KJ, Arno G, Erwood M, Stephens J, Sanchis-Juan A, Hull S, Megy K, Grozeva D, Dewhurst E, Malka S et al (2017) Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am J Hum Genet 100:75–90

    Article  CAS  PubMed  Google Scholar 

  • Casey J, Kawaguchi R, Morrissey M, Sun H, McGettigan P, Nielsen JE, Conroy J, Regan R, Kenny E, Cormican P et al (2011) First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype. Hum Mutat 32:1417–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J, Tiziano FD, Masini L, Piro F, Maragliano G et al (2009) Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia: expanding the clinical spectrum of STRA6 mutations. Hum Mutat 30:E673–E681

    Article  PubMed  Google Scholar 

  • Chen L, Gage PJ (2016) Heterozygous Pitx2 null mice accurately recapitulate the ocular features of Axenfeld–Rieger syndrome and congenital glaucoma. Invest Ophthalmol Vis Sci 57:5023–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Koppaka V, Thompson DC, Vasiliou V (2012) ALDH1A1: from lens and corneal crystallin to stem cell marker. Exp Eye Res 102C:105–106

    Article  CAS  Google Scholar 

  • Chou CM, Nelson C, Tarlé SA, Pribila JT, Bardakjian T, Woods S, Schneider A, Glaser T (2015) Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. Cell 161:634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukras C, Gaasterland T, Lee P, Gudiseva HV, Chavali VRM, Pullakhandam R, Maranhao B, Edsall L, Soares S, Reddy GB et al (2012) Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities. PLoS One 7:e50205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham TJ, Chatzi C, Sandell LL, Trainor PA, Duester G (2011) Rdh10 mutants deficient in limb field retinoic acid signaling exhibit normal limb patterning but display interdigital webbing. Dev Dyn 240:1142–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvekl A, Tamm ER (2004) Anterior eye development and ocular mesenchyme. BioEssays 26:374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvekl A, Wang W-L (2009) Retinoic acid signaling in mammalian eye development. Exp Eye Res 89:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’haene B, Meire F, Claerhout I, Kroes HY, Plomp A, Arens YH, de Ravel T, Casteels I, Jaegere SD, Hooghe S et al (2011) Expanding the spectrum of FOXC1 and PITX2 mutations and copy number changes in patients with anterior segment malformations. Invest Ophthalmol Vis Sci 52:324–333

    Article  CAS  PubMed  Google Scholar 

  • Deak KL, Dickerson ME, Linney E, Enterline DS, George TM, Melvin EC, Graham FL, Siegel DG, Hammock P, Mehltretter L et al (2005) Analysis of ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2 in human neural tube defects suggests a possible association with alleles in ALDH1A2. Birth Defects Res A 73:868–875

    Article  CAS  Google Scholar 

  • Dehghani M, Tezerjani MD, Metanat Z, Mehrjardi MYV (2017) A novel missense mutation in the ALDH13 gene causes anophthalmia in two unrelated iranian consanguineous families. Int J Mol Cell Med 6:131

    PubMed  PubMed Central  Google Scholar 

  • Driessen CAGG, Winkens HJ, Hoffmann K et al (2000) Disruption of the 11-cis-Retinol Dehydrogenase Gene Leads to Accumulation of cis-Retinols and cis-Retinyl Esters. Mol Cell Biol 20:4275–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duester G (2001) Genetic dissection of retinoid dehydrogenases. Chem Biol Interact 130–132:469–480

    Article  PubMed  Google Scholar 

  • Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duester G (2009) Keeping an eye on retinoic acid signaling during eye development. Chem Biol Interact 178:178–181

    Article  CAS  PubMed  Google Scholar 

  • Dupé V, Matt N, Garnier J-M, Chambon P, Mark M, Ghyselinck NB (2003) A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci USA 100:14036–14041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvarci S, Simpson EH, Schneider G, Kandel ER, Roeper J, Sigurdsson T (2018) Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression. Nat Commun 9:2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekong R, Jeremiah S, Judah D, Lehmann O, Mirzayans F, Hung Y-C, Walter MA, Bhattacharya S, Gant TW, Povey S et al (2004) Chromosomal anomalies on 6p25 in iris hypoplasia and Axenfeld–Rieger syndrome patients defined on a purpose-built genomic microarray. Hum Mutat 24:76–85

    Article  CAS  PubMed  Google Scholar 

  • Evans AL, Gage PJ (2005) Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet 14:3347–3359

    Article  CAS  PubMed  Google Scholar 

  • Fares-Taie L, Gerber S, Chassaing N, Clayton-Smith J, Hanein S, Silva E, Serey M, Serre V, Gérard X, Baumann C et al (2013) ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet 92:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetterman CD, Mirzayans F, Walter MA (2009) Characterization of a novel FOXC1 mutation, P297S, identified in two individuals with anterior segment dysgenesis. Clin Genet 76:296–299

    Article  CAS  PubMed  Google Scholar 

  • Folli C, Viglione S, Busconi M, Berni R (2005) Biochemical basis for retinol deficiency induced by the I41N and G75D mutations in human plasma retinol-binding protein. Biochem Biophys Res Commun 336:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Frey SK, Nagl B, Henze A, Raila J, Schlosser B, Berg T, Tepel M, Zidek W, Weickert MO, Pfeiffer AFH et al (2008) Isoforms of retinol binding protein 4 (RBP4) are increased in chronic diseases of the kidney but not of the liver. Lipids Health Dis 7:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage PJ, Suh H, Camper SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651

    CAS  PubMed  Google Scholar 

  • Gage PJ, Qian M, Wu D, Rosenberg KI (2008) The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev Biol 317:310–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V, Zimmermann T, Tech S, Guthoff RF, van Heyningen V, Fitzpatrick DR (2013) Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med 1:15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghyselinck NB (1999) Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J 18:4903–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S, Munnich A, Encha-Razavi F, Lyonnet S et al (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graw J (2010) Eye development. Curr Top Dev Biol 90:343–386

    Article  PubMed  Google Scholar 

  • Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, Calvas P, Dollfus H, Hamel C, Lopponen T et al (2004) Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 23:306–317

    Article  CAS  PubMed  Google Scholar 

  • Heavner W, Pevny L (2012) Eye development and retinogenesis. Cold Spring Harb Perspect Biol 4:a008391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendee KE, Sorokina EA, Muheisen SS, Reis LM, Tyler RC, Markovic V, Cuturilo G, Link BA, Semina EV (2018) PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet 27:1675–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert J, Cavallaro T, Martone R (1991) The distribution of retinol-binding protein and its mRNA in the rat eye. Invest Ophthalmol Vis Sci 32:302–309

    CAS  PubMed  Google Scholar 

  • Ittner LM, Wurdak H, Schwerdtfeger K et al (2005) Compound developmental eye disorders following inactivation of TGFβ signaling in neural-crest stem cells. J Biol 4:11. https://doi.org/10.1186/jbiol29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanan Y, Wicker LD, Al-Ubaidi MR et al (2008) Retinol dehydrogenases RDH11 and RDH12 in the mouse retina: expression levels during development and regulation by oxidative stress. Invest Ophthalmol Vis Sci 49:1071–1078. https://doi.org/10.1167/iovs.07-1207

    Article  PubMed  Google Scholar 

  • Kane MA, Folias AE, Pingitore A, Perri M, Krois CR, Ryu JY, Cione E, Napoli JL (2011) CrbpI modulates glucose homeostasis and pancreas 9-cis-retinoic acid concentrations. Mol Cell Biol 31:3277–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch J-L, Dollé P, Chambon P (1994) Genetic analysis of RXRα developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78:987–1003

    Article  CAS  PubMed  Google Scholar 

  • Kastner P, Mark M, Ghyselinck N, Krezel W, Dupé V, Grondona JM, Chambon P (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124:313–326

    CAS  PubMed  Google Scholar 

  • Kaukonen M, Woods S, Ahonen S, Lemberg S, Hellman M, Hytönen MK, Permi P, Glaser T, Lohi H (2018) Maternal inheritance of a recessive RBP4 defect in canine congenital eye disease. Cell Rep 23:2643–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur K, Ragge NK, Ragoussis J (2009) Molecular analysis of FOXC1 in subjects presenting with severe developmental eye anomalies. Mol Vis 8:1366

    Google Scholar 

  • Kawaguchi R, Yu J, Wiita P, Honda J, Sun H (2008) An essential ligand-binding domain in the membrane receptor for retinol-binding protein revealed by large-scale mutagenesis and a human polymorphism. J Biol Chem 283:15160–15168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi R, Yu J, Ter-Stepanian M, Zhong M, Cheng G, Yuan Q, Jin M, Travis GH, Ong D, Sun H (2011) Receptor-mediated cellular uptake mechanism that couples to intracellular storage. ACS Chem Biol 6:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi R, Zhong M, Kassai M, Ter-Stepanian M, Sun H (2012) STRA6-catalyzed vitamin A influx, efflux, and exchange. J Membr Biol 245:731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi R, Zhong M, Sun H (2013) Real-time analyses of retinol transport by the membrane receptor of plasma retinol binding protein. J Vis Exp 71:e50169

    Google Scholar 

  • Kelberman D, Islam L, Holder SE, Jacques TS, Calvas P, Hennekam RC, Nischal KK, Sowden JC (2011) Digenic inheritance of mutations in FOXC1 and PITX2: correlating transcription factor function and Axenfeld–Rieger disease severity. Hum Mutat 32:1144–1152

    Article  CAS  PubMed  Google Scholar 

  • Kelly M, Widjaja-Adhi MAK, Palczewski G, von Lintig J (2016) Transport of vitamin A across blood–tissue barriers is facilitated by STRA6. FASEB J 30:2985–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan KN, Carss K, Raymond FL, Islam F, Nihr BioResource-Rare Diseases Consortium, Moore AT, Michaelides M, Arno G (2017) Vitamin A deficiency due to bi-allelic mutation of RBP4: there’s more to it than meets the eye. Ophthalmic Genet 38:465–466

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski K, Walter MA (2000) Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Hum Mol Genet 9:2131–2139

    Article  CAS  PubMed  Google Scholar 

  • Kurth I, Thompson DA, Ruther K et al (2007) Targeted disruption of the murine retinal dehydrogenase gene Rdh12 does not limit visual cycle function. Mol Cell Biol 27:1370–1379. https://doi.org/10.1128/MCB.01486-06

    Article  CAS  PubMed  Google Scholar 

  • Lassen N, Bateman JB, Estey T, Kuszak JR, Nees DW, Piatigorsky J, Duester G, Day BJ, Huang J, Hines LM et al (2007) Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(−/−)/Aldh1a1(−/−) knock-out mice. J Biol Chem 282:25668–25676

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang J, Chen S, Wang F, Zhang T, Niswander L (2018) Genetic contribution of retinoid-related genes to neural tube defects. Hum Mutat 39:550–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Harlalka GV, Hameed A, Reham HM, Yasin M, Muhammad N, Khan S, Baple EL, Crosby AH, Saleha S (2018) Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/microphthalmia, and review of the literature. BMC Med Genet 19:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Gudas LJ (2005) Disruption of the lecithin: retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J Biol Chem 280:40226–40234

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tang X-H, Gudas LJ (2008) Homeostasis of retinol in lecithin: retinol acyltransferase gene knockout mice fed a high retinol diet. Biochem Pharmacol 75:2316–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lu Y, Liu S, Liao S (2017) Novel compound heterozygous mutations of ALDH1A3 contribute to anophthalmia in a non-consanguineous Chinese family. Genet Mol Biol 40:430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loudig O, Maclean GA, Dore NL, Luu L, Petkovich M (2005) Transcriptional co-operativity between distant retinoic acid response elements in regulation of Cyp26A1 inducibility. Biochem J 392:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas R, Mihály J, Lowe GM, Graham DL, Szklenar M, Szegedi A, Töröcsik D, Rühl R (2018) Reduced carotenoid and retinoid concentrations and altered lycopene isomer ratio in plasma of atopic dermatitis patients. Nutrients 10:1390

    Article  CAS  PubMed Central  Google Scholar 

  • Luhmann UFO, Carvalho LS, Holthaus SM et al (2015) The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors. Hum Mol Genet 24:128–141. https://doi.org/10.1093/hmg/ddu424

    Article  CAS  PubMed  Google Scholar 

  • Luo T, Sakai Y, Wagner E, Dräger UC (2006) Retinoids, eye development, and maturation of visual function. J Neurobiol 66:677–686. https://doi.org/10.1002/neu.20239

    Article  CAS  PubMed  Google Scholar 

  • Maclean G, Dollé P, Petkovich M (2009) Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Dev Dyn 238:732–745

    Article  CAS  PubMed  Google Scholar 

  • MacLean G, Li H, Metzger D et al (2007) Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148:4560–4567. https://doi.org/10.1210/en.2007-049

    Article  CAS  PubMed  Google Scholar 

  • Maeda A, Palczewski K (2013) Retinal degeneration in animal models with a defective visual cycle. Drug Discov Today Dis Models 10:e163–e172

    Article  PubMed  PubMed Central  Google Scholar 

  • Maher JJ (2013) RBP4 and fatty liver: a direct link? Hepatology 58:477–479

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Petrescu AD, Xiong Y, Noy N (2011) Nuclear translocation of cellular retinoic acid-binding protein II is regulated by retinoic acid-controlled SUMOylation. J Biol Chem 286:42749–42757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makia NL, Bojang P, Falkner KC, Conklin DJ, Prough RA (2011) Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chem Biol Interact 191:278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makover A, Soprano DR, Wyatt ML, Goodman DS (1989) Localization of retinol-binding protein messenger RNA in the rat kidney and in perinephric fat tissue. J Lipid Res 30:171–180

    CAS  PubMed  Google Scholar 

  • Makrythanasis P, Nelis M, Santoni FA, Guipponi M, Vannier A, Béna F, Gimelli S, Stathaki E, Temtamy S, Mégarbané A et al (2014) Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat 35:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Maly IP, Crotet V, Toranelli M (2003) The so-called “testis-specific aldehyde dehydrogenase” corresponds to type 2 retinaldehyde dehydrogenase in the mouse. Histochem Cell Biol 119:169–174

    CAS  PubMed  Google Scholar 

  • Marcadier JL, Mears AJ, Woods EA, Fisher J, Airheart C, Qin W, Beaulieu CL, Dyment DA, Innes AM, Curry CJ et al (2016) A novel mutation in two Hmong families broadens the range of STRA6-related malformations to include contractures and camptodactyly. Am J Med Genet A 170A:11–18

    Article  CAS  PubMed  Google Scholar 

  • Marchitti SA, Brocker C, Stagos D, Vasiliou V (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4:697–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matt N (2005) Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells. Development 132:4789–4800

    Article  CAS  PubMed  Google Scholar 

  • Mic FA, Molotkov A, Molotkova N, Duester G (2004) Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Dev Dyn 231:270–277

    Article  CAS  PubMed  Google Scholar 

  • Mirza G, Williams RR, Mohammed S, Clark R, Newbury-Ecob R, Baldinger S, Flinter F, Ragoussis J (2004) Refined genotype-phenotype correlations in cases of chromosome 6p deletion syndromes. Eur J Hum Genet 12:718–728

    Article  CAS  PubMed  Google Scholar 

  • Molotkov A, Molotkova N, Duester G (2006) Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development 133:1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Li J, Donini S, Sobol RW, Rizzi M, Garavaglia S (2016) Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid. Sci Rep 6:35710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori M, Ghyselinck NB, Chambon P, Mark M (2001) Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes. Invest Ophthalmol Vis Sci 42:1312–1318

    CAS  PubMed  Google Scholar 

  • Mory A, Ruiz FX, Dagan E, Yakovtseva EA, Kurolap A, Parés X, Farrés J, Gershoni-Baruch R (2014) A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred muslim kindred. Eur J Hum Genet 22:419–422

    Article  CAS  PubMed  Google Scholar 

  • Motani A, Wang Z, Conn M, Siegler K, Zhang Y, Liu Q, Johnstone S, Xu H, Thibault S, Wang Y et al (2009) Identification and characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo. J Biol Chem 284:7673–7680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli JL (2016) Functions of intracellular retinoid binding-proteins. Subcell Biochem 81:21–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson CH, Peng C-C, Lutz JD, Yeung CK, Zelter A, Isoherranen N (2016) Direct protein-protein interactions and substrate channelling between cellular retinoic acid binding proteins and CYP26B1. FEBS Lett 590:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng WY, Pasutto F, Bardakjian TM, Wilson MJ, Watson G, Schneider A, Mackey DA, Grigg JR, Zenker M, Jamieson RV (2013) A puzzle over several decades: eye anomalies with FRAS1 and STRA6 mutations in the same family. Clinical Genetics 83:162–168

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dolle P (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127:75–85

    CAS  PubMed  Google Scholar 

  • O’Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, Baehr W, Palczewski K, Blaner WS (2005) Retinoid absorption and storage is impaired in mice lacking lecithin: retinol acyltransferase (LRAT). J Biol Chem 280:35647–35657

    Article  CAS  PubMed  Google Scholar 

  • Parés X, Farrés J, Kedishvili N, Duester G (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol Life Sci 65:3936–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker RO, Crouch RK (2010) Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res 91:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, FitzPatrick DR, Nürnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D et al (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasutto F, Flinter F, Rauch A, Reis A (2018) Novel STRA6 null mutations in the original family described with Matthew-Wood syndrome. Am J Med Genet A 176:134–138

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Khan AO, Alsahli S, Abdel-Salam G, Nowilaty SR, Mansour AM, Nabil A, Al-Owain M, Sogati S, Salih MA et al (2018) Genetic investigation of 93 families with microphthalmia or posterior microphthalmos. Clin Genet 93:1210–1222

    Article  CAS  PubMed  Google Scholar 

  • Pennimpede T, Cameron DA, MacLean GA, Li H, Abu-Abed S, Petkovich M (2010) The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth defects res. Part A Clin Mol Teratol 88:883–894

    Article  CAS  Google Scholar 

  • Perusek L, Maeda T (2013) Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients 5:2646–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perveen R, Lloyd IC, Clayton-Smith J, Churchill A, van Heyningen V, Hanson I, Taylor D, McKeown C, Super M, Kerr B et al (2000) Phenotypic variability and asymmetry of Rieger syndrome associated with PITX2 mutations. Invest Ophthalmol Vis Sci 41:2456–2460

    CAS  PubMed  Google Scholar 

  • Pijnappel WW, Hendriks HF, Folkers GE, van den Brink CE, Dekker EJ, Edelenbosch C, van der Saag PT, Durston AJ (1993) The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366:340–344

    Article  CAS  PubMed  Google Scholar 

  • Plaisancié J, Brémond-Gignac D, Demeer B, Gaston V, Verloes A, Fares-Taie L, Gerber S, Rozet J-M, Calvas P, Chassaing N (2016) Incomplete penetrance of biallelic ALDH1A3 mutations. Eur J Med Genet 59:215–218

    Article  PubMed  Google Scholar 

  • Priston M, Kozlowski K, Gill D, Letwin K, Buys Y, Levin AV, Walter MA, Héon E (2001) Functional analyses of two newly identified PITX2 mutants reveal a novel molecular mechanism for Axenfeld–Rieger syndrome. Hum Mol Genet 10:1631–1638

    Article  CAS  PubMed  Google Scholar 

  • Quadro L, Hamberger L, Gottesman ME, Colantuoni V, Ramakrishnan R, Blaner WS (2004) Transplacental delivery of retinoid: the role of retinol-binding protein and lipoprotein retinyl ester. Am J Physiol-Endocrinol Metabol 286:E844–E851

    Article  CAS  Google Scholar 

  • Quadro L, Hamberger L, Gottesman ME, Wang F, Colantuoni V, Blaner WS, Mendelsohn CL (2005) Pathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency. Endocrinology 146:4479–4490

    Article  CAS  PubMed  Google Scholar 

  • Reese AB, Ellsworth RM (1966) The anterior chamber cleavage syndrome. JAMA Ophthalmol 75:307–318

    CAS  Google Scholar 

  • Reis LM, Tyler RC, Volkmann Kloss BA, Schilter KF, Levin AV, Lowry RB, Zwijnenburg PJG, Stroh E, Broeckel U, Murray JC et al (2012) PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet 20:1224–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139:843–858

    Article  CAS  PubMed  Google Scholar 

  • Riera M, Wert A, Nieto I, Pomares E (2017) Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns. Mol Genet Genomic Med 5:709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romand R, Kondo T, Cammas L et al (2008) Dynamic expression of the retinoic acid-synthesizing enzyme retinol dehydrogenase 10 (rdh10) in the developing mouse brain and sensory organs. J Comp Neurol 508:879–892. https://doi.org/10.1002/cne.21707

    Article  CAS  PubMed  Google Scholar 

  • Roos L, Fang M, Dali C, Jensen H, Christoffersen N, Wu B, Zhang J, Xu R, Harris P, Xu X et al (2014) A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia: the role of ALDH1A3 in autosomal recessive microphthalmia. Clin Genet 86:276–281

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Ghyselinck NB, Mata N et al (2007) Somatic ablation of the Lrat gene in the mouse retinal pigment epithelium drastically reduces its retinoid storage. Invest Ophthalmol Vis Sci 48:5377–5387. https://doi.org/10.1167/iovs.07-0673

    Article  PubMed  Google Scholar 

  • Ruiz A, Mark M, Jacobs H, Klopfenstein M, Hu J, Lloyd M, Habib S, Tosha C, Radu RA, Ghyselinck NB et al (2012) Retinoid content, visual responses, and ocular morphology are compromised in the retinas of mice lacking the retinol-binding protein receptor, STRA6. Invest Ophthalmol Vis Sci 53:3027–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadi I, Toro R, Kuburas A, Semina E, Murray JC, Russo AF (2006) An unusual class ofPITX2 mutations in Axenfeld–Rieger syndrome. Birth Defects Res A 76:175–181

    Article  CAS  Google Scholar 

  • Saari JC, Nawrot M, Garwin GG, Kennedy MJ, Hurley JB, Ghyselinck NB, Chambon P (2002) Analysis of the visual cycle in cellular retinol-binding protein type I (CRBPI) knockout mice. Invest Ophthalmol Vis Sci 43:1730–1735

    PubMed  Google Scholar 

  • Sadowski S, Chassaing N, Gaj Z, Czichos E, Wilczynski J, Nowakowska D (2017) Both a frameshift and a missense mutation of the STRA6 gene observed in an infant with the Matthew-Wood syndrome: Matthew-Wood syndrome and mutations of the STRA6 gene. Birth Defects Res 109:251–253

    Article  CAS  PubMed  Google Scholar 

  • Sahu B, Maeda A (2016) Retinol dehydrogenases regulate vitamin A metabolism for visual function. Nutrients 8:746

    Article  CAS  PubMed Central  Google Scholar 

  • Sakai Y, Meno C, Fujii H et al (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225. https://doi.org/10.1101/gad.851501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai Y, Luo T, McCaffery P et al (2004) CYP26A1 and CYP26C1 cooperate in degrading retinoic acid within the equatorial retina during later eye development. Dev Biol 276:143–157. https://doi.org/10.1016/j.ydbio.2004.08.032

    Article  CAS  PubMed  Google Scholar 

  • Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, Rey J-P, Ma J, Staehling-Hampton K, Trainor PA (2007) RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears AE, Palczewski K (2016) Lecithin:retinol acyltransferase: a key enzyme involved in the retinoid (visual) cycle. Biochemistry 55:3082–3091. https://doi.org/10.1021/acs.biochem.6b00319

    Article  CAS  PubMed  Google Scholar 

  • Seeliger MW, Biesalski HK, Wissinger B, Gollnick H, Gielen S, Frank J, Beck S, Zrenner E (1999) Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Invest Ophthalmol Vis Sci 40:3–11

    CAS  PubMed  Google Scholar 

  • Segel R, Levy-Lahad E, Pasutto F, Picard E, Rauch A, Alterescu G, Schimmel MS (2009) Pulmonary hypoplasia–diaphragmatic hernia–anophthalmia–cardiac defect (PDAC) syndrome due to STRA6 mutations: what are the minimal criteria? Am J Med Genet A 149A:2457–2463

    Article  CAS  PubMed  Google Scholar 

  • Semerci CN, Kalay E, Yıldırım C, Dinçer T, Ölmez A, Toraman B, Koçyiğit A, Bulgu Y, Okur V, Şatıroğlu-Tufan L et al (2014) Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia. Br J Ophthalmol 98:832–840

    Article  PubMed  Google Scholar 

  • Semina EV, Reiter R, Leysens NJ, Alward WLM, Small KW, Datson NA, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel BU et al (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14:392

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Shi D, Suzuki T et al (2016) Severe ocular phenotypes in Rbp4-deficient mice in the C57BL/6 genetic background. Lab Invest 96:680–691. https://doi.org/10.1038/labinvest.2016.39

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Obert E, Rahman B, Rohrer B, Lobo GP (2017) The retinol binding protein receptor 2 (Rbpr2) is required for photoreceptor outer segment morphogenesis and visual function in zebrafish. Sci Rep 7:16207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sima A, Parisotto M, Mader S, Bhat PV (2009) Kinetic characterization of recombinant mouse retinal dehydrogenase types 3 and 4 for retinal substrates. Biochem Biophys Acta 1790:1660–1664

    Article  CAS  PubMed  Google Scholar 

  • Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, Umeda K, Lao R, Tang PL-F, Wan E et al (2015) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects: exome sequencing in 32 patients with anophthalmia/microphthalmia. Clin Genet 88:468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RS, Zabaleta A, Kume T, Savinova OV, Kidson SH, Martin JE, Nishimura DY, Alward WL, Hogan BL, John SW (2000) Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum Mol Genet 9:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Souzeau E, Siggs OM, Zhou T, Galanopoulos A, Hodson T, Taranath D, Mills RA, Landers J, Pater J, Smith JE et al (2017) Glaucoma spectrum and age-related prevalence of individuals with FOXC1 and PITX2 variants. Eur J Hum Genet 25:839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowden JC (2007) Molecular and developmental mechanisms of anterior segment dysgenesis. Eye 21:1310–1318

    Article  CAS  PubMed  Google Scholar 

  • Srour M, Chitayat D, Caron V, Chassaing N, Bitoun P, Patry L, Cordier M-P, Capo-Chichi J-M, Francannet C, Calvas P et al (2013) Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 93:765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srour M, Caron V, Pearson T, Nielsen SB, Lévesque S, Delrue M-A, Becker TA, Hamdan FF, Kibar Z, Sattler SG et al (2016) Gain-of-function mutations in RARB cause intellectual disability with progressive motor impairment: human mutation. Hum Mutat 37:786–793

    Article  CAS  PubMed  Google Scholar 

  • Strungaru MH, Dinu I, Walter MA (2007) Genotype-phenotype correlations in Axenfeld–Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci 48:228–237

    Article  PubMed  Google Scholar 

  • Sun D-P, Dai Y-H, Pan X-J, Shan T, Wang D-Q, Chen P (2017) A Chinese family with Axenfeld–Rieger syndrome: report of the clinical and genetic findings. Int J Ophthalmol 10:847–853

    PubMed  PubMed Central  Google Scholar 

  • Tanwar M, Dada T, Dada R (2010) Axenfeld-Rieger syndrome associated with congenital glaucoma and cytochrome P4501B1 gene mutations. Case Rep Med 2010:1–6

    Article  Google Scholar 

  • Thompson DA, Li Y, McHenry CL, Carlson TJ, Ding X, Sieving PA, Apfelstedt-Sylla E, Gal A (2001) Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat Genet 28:123–124

    Article  CAS  PubMed  Google Scholar 

  • Totah RA, Rettie AE (2007) Principles of drug metabolism 3: enzymes and tissues. Comprehensive Medicinal Chemistry II. Elsevier, Amsterdam, pp 167–191

    Chapter  Google Scholar 

  • Travis GH, Golczak M, Moise AR, Palczewski K (2007) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol 47:469–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsin A, Betts-Obregon B, Grigsby J (2018) Visual cycle proteins: structure, function, and roles in human retinal disease. J Biol Chem 293:13016–13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tümer Z, Bach-Holm D (2009) Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 17:1527–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara M, Yashiro K, Mamiya S, Nishino J, Chambon P, Dolle P, Sakai Y (2007) CYP26A1 and CYP26C1 cooperatively regulate anterior–posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Dev Biol 302:399–411

    Article  CAS  PubMed  Google Scholar 

  • Ullah E, Nadeem Saqib MA, Sajid S, Shah N, Zubair M, Khan MA, Ahmed I, Ali G, Dutta AK, Danda S et al (2016) Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res 146:163–171

    Article  CAS  PubMed  Google Scholar 

  • Vieira V, David G, Roche O, de la Houssaye G, Boutboul S, Arbogast L, Kobetz A, Orssaud C, Camand O, Schorderet DF et al (2006) Identification of four new PITX2 gene mutations in patients with Axenfeld–Rieger syndrome. Mol Vis 12:1448–1460

    CAS  PubMed  Google Scholar 

  • Vogel S, Mendelsohn CL, Mertz JR et al (2001) Characterization of a new member of the fatty acid-binding protein family that binds all-trans-retinol. J Biol Chem 276:1353–1360. https://doi.org/10.1074/jbc.M005118200

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, Zhang Z (2018) Adipokine RBP4 drives ovarian cancer cell migration. J Ovarian Res 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen B, Li S, Li H et al (2016) Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium. Sci Rep 6:21208. https://doi.org/10.1038/srep21208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West B, Bove KE, Slavotinek AM (2009) Two novel STRA6 mutations in a patient with anophthalmia and diaphragmatic eventration. Am J Med Genet Part A 149A:539–542

    Article  CAS  PubMed  Google Scholar 

  • White RJ, Nie Q, Lander AD, Schilling TF (2007) Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 5:e304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White T, Lu T, Metlapally R, Katowitz J, Kherani F, Wang T-Y, Tran-Viet K-N, Young TL (2008) Identification of STRA6 and SKI sequence variants in patients with anophthalmia/microphthalmia. Mol Vis 8:2458

    Google Scholar 

  • Williams AL, Bohnsack BL (2015) Neural crest derivatives in ocular development: discerning the eye of the storm: neural crest derivatives in eye development. Birth Defects Res Part C: Embryo Today: Rev 105:87–95

    Article  CAS  Google Scholar 

  • Williamson KA, FitzPatrick DR (2014) The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 57:369–380

    Article  PubMed  Google Scholar 

  • Wu BX, Moiseyev G, Chen Y et al (2004) Identification of RDH10, an all-trans retinol dehydrogenase, in retinal muller cells. Invest Ophthalmol Vis Sci 45:3857–3862. https://doi.org/10.1167/iovs.03-1302

    Article  PubMed  Google Scholar 

  • Yahyavi M, Abouzeid H, Gawdat G, de Preux A-S, Xiao T, Bardakjian T, Schneider A, Choi A, Jorgenson E, Baier H et al (2013) ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 22:3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro K, Zhao X, Uehara M, Yamashita K, Nishijima M, Nishino J, Saijoh Y, Sakai Y, Hamada H (2004) Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev Cell 6:411–422

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Fang X, Jin C, Yin J, Li J, Zhao S, Miao Q, Song F (2014) Identification of a novel frameshift mutation in PITX2 gene in a Chinese family with Axenfeld–Rieger syndrome. J Zhejiang Univ Sci B 15:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zacharias AL, Gage PJ (2010) Canonical Wnt/β-catenin signaling is required for maintenance but not activation of Pitx2 expression in neural crest during eye development. Dev Dyn 239:3215–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemojtel T, Kielbasa SM, Arndt PF, Chung H-R, Vingron M (2009) Methylation and deamination of CpGs generate p53-binding sites on a genomic scale. Trends Genet 25:63–66

    Article  CAS  PubMed  Google Scholar 

  • Zizola CF, Frey SK, Jitngarmkusol S et al (2010) Cellular retinol-binding protein type I (CRBP-I) regulates adipogenesis. Mol Cell Biol 30:3412–3420. https://doi.org/10.1128/MCB.00014-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Rozet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedelec, B., Rozet, JM. & Fares Taie, L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 138, 937–955 (2019). https://doi.org/10.1007/s00439-019-02052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-02052-2

Navigation