Skip to main content

Advertisement

Log in

Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The legume endosymbiont Sinorhizobium meliloti can utilize a broad range of carbon compounds to support its growth. The linear, six-carbon polyol galactitol is abundant in vascular plants and is metabolized in S. meliloti by the contribution of two loci SMb21372-SMb21377 and SMc01495-SMc01503 which are found on pSymB and the chromosome, respectively. The data suggest that several transport systems, including the chromosomal ATP-binding cassette (ABC) transporter smoEFGK, contribute to the uptake of galactitol, while the adjacent gene smoS encodes a protein for oxidation of galactitol into tagatose. Subsequently, genes SMb21374 and SMb21373, encode proteins that phosphorylate and epimerize tagatose into fructose-6-phosphate, which is further metabolized by the enzymes of the Entner–Doudoroff pathway. Of note, it was found that SMb21373, which was annotated as a 1,6-bis-phospho-aldolase, is homologous to the E. coli gene gatZ, which is annotated as encoding the non-catalytic subunit of a tagatose-1,6-bisphosphate aldolase heterodimer. When either of these genes was introduced into an Agrobacterium tumefaciens strain that carries a tagatose-6-phosphate epimerase mutation, they are capable of complementing the galactitol growth deficiency associated with this mutation, strongly suggesting that these genes are both epimerases. Phylogenetic analysis of the protein family (IPR012062) to which these enzymes belong, suggests that this misannotation is systemic throughout the family. S. meliloti galactitol catabolic mutants do not exhibit symbiotic deficiencies or the inability to compete for nodule occupancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828

    Article  CAS  PubMed  Google Scholar 

  • Bieleski RL (1982) Sugar Alcohols. In: Loewus FA, Tanner W (eds) Plant carbohydrates I: intracellular carbohydrates. Springer, Berlin, pp 158–192

    Chapter  Google Scholar 

  • Brinkkötter A, Klöß H, Alpert CA, Lengeler JW (2000) Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol Microbiol 37:125–135

    Article  PubMed  Google Scholar 

  • Brinkkötter A, Shakeri-Garakani A, Lengeler JW (2002) Two class II d-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol 177:410–419

    Article  CAS  PubMed  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dréano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Pühler A, Purnelle B, Ramsperger U, Renard C, Thébault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci 98:9877–9882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles TC, Finan TM (1990) Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b. J Bacteriol 172:2469–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles TC, Finan TM (1991) Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127:5–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen I-MA, Markowitz VM, Palaniappan K, Szeto E, Chu K, Huang J, Ratner A, Pillay M, Hadjithomas M, Huntemann M, Mikhailova N, Ovchinnikova G, Ivanova NN, Kyrpides NC (2016) Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. BMC Genom 17:307

    Article  CAS  Google Scholar 

  • Clark SRD, Oresnik IJ, Hynes MF (2001) RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264:623–633

    Article  CAS  PubMed  Google Scholar 

  • Cold Spring Harbor Protocols (2006) LB (Luria-Bertani) liquid medium. Cold Spring Harb Protoc 2006:pdb.rec8141

    Article  Google Scholar 

  • diCenzo GC, Finan TM (2017) The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev 81:e00019–e00017

    Article  PubMed  PubMed Central  Google Scholar 

  • diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M (2016) Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 7:12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF (2012) Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. Microbiology 158:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Downie JA, Young JPW (2001) The ABC of symbiosis. Nature 412:597–598

    Article  CAS  PubMed  Google Scholar 

  • Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (1984) General transduction in Rhizobium meliloti. J Bacteriol 159:120–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Singer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877

    Article  CAS  PubMed  Google Scholar 

  • Finan TM, Kunkel B, De Vos GF, Singer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang H-Y, Dosztányi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto Silvio CE, Wu CH, Xenarios I, Yeh L-S, Young S-Y, Mitchell AL (2017) InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199

    Article  CAS  PubMed  Google Scholar 

  • Fry J, Wood M, Poole PS (2001) Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Gage DJ, Long SR (1998) α-galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol 180:5739–5748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vandenbol M, Vorhölter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Geddes BA, Oresnik IJ (2012a) Genetic characterization of a complex locus necessary for the transport and catabolism of erythritol, adonitol and l-arabitol in Sinorhizobium meliloti. Microbiology 158:2180–2191

    Article  CAS  PubMed  Google Scholar 

  • Geddes BA, Oresnik IJ (2012b) Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 194:5044–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geddes BA, Oresnik IJ (2014) Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 60:491–507

    Article  CAS  PubMed  Google Scholar 

  • Geddes BA, Oresnik IJ (2016) The mechanism of symbiotic nitrogen fixation. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts, 1st edn. Springer International Publishing, Cham, pp 69–97

    Chapter  Google Scholar 

  • Gonin S, Arnoux P, Pierru B, Lavergne J, Alonso B, Sabaty M, Pignol D (2007) Crystal structures of an extracytoplasmic solute receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for α-keto acid binding. BMC Struct Biol 7:1–14

    Article  CAS  Google Scholar 

  • Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27:229–230

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Eschericia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • House BL, Mortimer MW, Kahn ML (2004) New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microb 70:2806–2815

    Article  CAS  Google Scholar 

  • Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T, Charles TC (2008) Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. Mol Plant Microbe Interact 21:979–987

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Gutterson N (1987) An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Lengeler J (1975) Mutations affecting transport of the hexitols d-mannitol, d-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J Bacteriol 124:26–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lengeler J (1977) Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12. Mol Gen Genet 152:83–91

    Article  CAS  PubMed  Google Scholar 

  • Leyn SA, Gao F, Yang C, Rodionov DA (2012) N-Acetylgalactosamine utilization pathway and regulon in proteobacteria: genomic reconstruction and experimental characterization in Shewanella. J Biol Chem 287:28047–28056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean AM, MacPherson G, Aneja P, Finan TM (2006) Characterization of the β-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microb 72:5403–5413

    Article  CAS  Google Scholar 

  • MacLean AM, White CE, Fowler JE, Finan TM (2009) Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Mol Plant Microbe Interact 22:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM (2006) Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci 103:17933–17938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meade HM, Long RS, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: SC10 workshop on gateway computing environments (GCE10)

  • Mortlock RP (ed) (1984) Microorganisms as model systems for studying evolution. Plenum Press, New York

    Google Scholar 

  • Nobelmann B, Lengeler JW (1995) Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. BBA Gene Struct Expr 1262:69–72

    Article  Google Scholar 

  • Nobelmann B, Lengeler JW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178:6790–6795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolle N, Felsl A, Heermann R, Fuchs TM (2017) Genetic characterization of the galactitol utilization pathway of Salmonella enterica serovar Typhimurium. J Bacteriol 199:e00595–e00516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oresnik IJ, Pacarynuk LA, O’Brien SAP, Yost CK, Hynes MF (1998) Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact 11:1175–1185

    Article  CAS  Google Scholar 

  • Pickering BS, Oresnik IJ (2008) Formate-dependent autotrophic growth in Sinorhizobium meliloti. J Bacteriol 190:6409–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt R, Drescher C, Park SK, Phillips GJ (2000) Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43:12–23

    Article  CAS  PubMed  Google Scholar 

  • Poysti NJ, Loewen EDM, Wang Z, Oresnik IJ (2007) Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 153:727–736

    Article  CAS  PubMed  Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Article  CAS  PubMed  Google Scholar 

  • Prlić A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (2010) Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26:2983–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pundir S, Martin MJ, O’Donovan C (2017) UniProt protein knowledgebase. In: Wu CH, Arighi CN, Ross KE (eds) Protein bioinformatics: from protein modifications and networks to proteomics. Springer New York, New York, pp 41–55

    Chapter  Google Scholar 

  • Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH (1996) Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142:231–250

    Article  CAS  PubMed  Google Scholar 

  • Rivers D, Oresnik IJ (2013) Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 195:3424–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sánchez R, Serra F, Tárraga J, Medina I, Carbonell J, Pulido L, de María A, Capella-Gutíerrez S, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H (2011) Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res 39:W470–W474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder BK, House BL, Mortimer MW, Yurgel SN, Maloney SC, Ward KL, Kahn ML (2005) Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome. Appl Environ Microbiol 71:5858–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein MA, Schäfer A, Giffhorn F (1997) Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J Bacteriol 179:6335–6340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoscheck CM (1990) Quantitation of protein. In: Deutscher MP (ed) Methods in enzymology. Academic Press, San Diego, pp 50–68

    Google Scholar 

  • Thomas GH, Southworth T, León-Kempis MR, Leech A, Kelly DJ (2006) Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 152:187–198

    Article  CAS  PubMed  Google Scholar 

  • Triplett EW, Sadowsky MJ (1992) Genetics of competition for nodulation of legumes. Annu Rev Microbiol 46:399–422

    Article  CAS  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vitousek PM, Hättenschwiler S, Olander L, Allison S (2002) Nitrogen and nature. AMBIO 31:97–101

    Article  PubMed  Google Scholar 

  • Wichelecki DJ, Vetting MW, Chou L, Al-Obaidi N, Bouvier JT, Almo SC, Gerlt JA (2015) ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel d-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58. J Biol Chem 290:28963–28976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson JD, Jennings DB, Guo W-W, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: polyols—multifunctional plant protection? J Am Soc Hortic Sci 127:467–473

    Article  CAS  Google Scholar 

  • Yost CK, Rath AM, Noel TC, Hynes MF (2006) Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology 152:2061–2074

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z-C, Zaheer R, Finan TM (2006a) Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. J Bacteriol 188:1089–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z-C, Zaheer R, Morton R, Finan TM (2006b) Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 34:2686–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants awarded to IJO and TMF. MGK acknowledges support from the University of Manitoba Faculty of Science Award and the University of Manitoba Faculty of Graduate Studies GETS program.

Funding

This study was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants awarded to IJO and TMF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan J. Oresnik.

Ethics declarations

Conflict of interest

The authors wish to declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

438_2019_1545_MOESM2_ESM.eps

Fig. S1 Digital version of the phylogeny displayed in Figure 8, zooming in reveals organism names and bootstrap values (EPS 9819 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlmeier, M.G., White, C.E., Fowler, J.E. et al. Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism. Mol Genet Genomics 294, 739–755 (2019). https://doi.org/10.1007/s00438-019-01545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-019-01545-z

Keywords

Navigation