Skip to main content
Log in

Comparative genomics reveals origin of MIR159AMIR159B paralogy, and complexities of PTGS interaction between miR159 and target GA-MYBs in Brassicaceae

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Whole-genome and segmental duplications coupled with sequence and functional diversification are responsible for gene family expansion, and morphological and adaptive diversity. Although broad contours of such processes are understood, detailed investigations on regulatory elements, such as miRNA-transcription factor modules, especially in non-model crop plants with complex genomes, are few. The present study was performed to understand evolutionary history of MIR159 family, and changes in the miRNA-binding site (MBS) of the targets MYB33, MYB65, and MYB101 that may affect post-transcriptional gene silencing. We established orthology and paralogy between members of MIR159 family by reconstructing the phylogeny based on 240 precursor sequences sampled across green plants. An unambiguous paralogous relationship between MIR159A and MIR159B was observed only in Brassicaceae which prompted us to analyze the origin of this paralogy. Comparative micro-synteny of ca. 100 kb genomic segments surrounding MIR159A, MIR159B, and MIR159C loci across 15 genomes of Brassicaceae revealed segmental duplication that occurred in the common ancestor of Brassicaceae to be responsible for origin of MIR159AMIR159B paralogy; extensive gene loss and rearrangements were also encountered. The impact of polyploidy was revealed when the three sub-genomes—least fractionated (LF), moderately fractionated (MF1), and most fractionated (MF2) sub-genomes of Brassica and Camelina sativa—were analyzed. Extensive gene loss was observed among sub-genomes of Brassica, whereas those in Camelina were largely conserved. Analysis of the target MYBs revealed the complete loss of MYB33 homologs in a Brassica lineage-specific manner. Our findings suggest that mature miR159a/b /c are capable of targeting MYB65 across Brassicaceae, MYB33 in all species except Brassica, and MYB101 only in Arabidopsis thaliana. Comparative analysis of the mature miRNA sequence and the miRNA-binding site (MBS) in MYB33, MYB65, and MYB101 showed the complexity of regulatory network that is dependent on strict sequence complementarity potentially leading to regulatory diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci 104:16371–16376

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen RS, Li J, Alonso-Peral MM, White RG, Gubler F, Millar AA (2010) MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1:18–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154(2):757–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Peral MM, Sun C, Millar AA (2012) MicroRNA159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis. PLoS One 7:e34751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baniaga AE, Arrigo N, Barker MS (2016) The small nuclear genomes of Selaginella are associated with a low rate of genome size evolution. Genome Biol Evol 8:1516–1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    Article  CAS  PubMed  Google Scholar 

  • Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray N, Dubchak I, Pachter L (2003) AVID: a global alignment program. Genome Res 13:97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chaney L, Sharp AR, Evans CR, Udall JA (2016) Genome mapping in plant comparative genomics. Trends Plant Sci 21:770–780

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PloS one 7(5):e36442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X (2018) Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4:258–268

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2010) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12(9):1551–1567

    Article  Google Scholar 

  • Csukasi F, Donaire L, Casanal A, Martinez-Priego L, Botella MA, Medina-Escobar N, Valpuesta V (2012) Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. New Phytol 195:47–57

    Article  CAS  PubMed  Google Scholar 

  • Dodsworth S, Chase MW, Leitch AR (2015) Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc 180:1–5

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Chen A, Chen W, Westwood JH, Baulcombe DC, Carr JP (2014) Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of Cucumber mosaic virus. Plant Physiol 164:1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:273–279

    Article  CAS  Google Scholar 

  • Ghani MA, Li J, Rao L, Raza MA, Cao L, Yu N, Zou X, Chen L (2014) The role of small RNAs in wide hybridisation and allopolyploidization between Brassica rapa and Brassica nigra. BMC Plant Biol 14:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiurcuta CG, Moret BM (2014) Evaluating synteny for improved comparative studies. Bioinformatics 30:9–18

    Article  CAS  Google Scholar 

  • Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  CAS  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:109–111

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:140–144

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2007) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158

    Article  CAS  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci 106:17835–17840

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain A, Das S (2016) Synteny and comparative analysis of miRNA retention, conservation, and structure across Brassicaceae reveals lineage-and sub-genome-specific changes. Funct Integr Genom 16:253–268

    Article  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Li J, Tang H, Paterson AH (2014) Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26:2792–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Koh C, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706–3716

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 1–7

  • Kellogg EA (2016) Has the connection between polyploidy and diversification actually been tested? Curr Opin Plant Biol 30:25–32

    Article  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2010) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:152–157

    Article  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73

    Article  CAS  Google Scholar 

  • Li Y, Li C, Ding G, Jin Y (2011) Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 11:122–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Alonso-Peral M, Wong G, Wang MB, Millar AA (2016) Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses. BMC Plant Biol 16:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Wang X (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930–3941

    Google Scholar 

  • Liu B, De Storme N, Geelen D (2017) Gibberellin induces diploid pollen formation by interfering with meiotic cytokinesis. Plant Physiol 173:480–512

    Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bure SP (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:31–36

    Article  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray F, Kalla R, Jacobsen J, Gubler F (2003) A role for HvGAMYB in anther development. Plant J 33:481–491

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. J Jpn Bot 7:389–452

    Google Scholar 

  • Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proudfoot NJ (2011) Ending the message: poly(A) signals then and now. Genes Dev 25:1770–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. Springer, Berlin, pp 3–11

    Google Scholar 

  • Rathore P, Geeta R, Das S (2016) Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history. Plant Sci 247:35–48

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, Anand S, Jain A, Das S (2017) Comparative genomics and synteny analysis of KCS17–KCS18 cluster across different genomes and sub-genomes of Brassicaceae for analysis of its evolutionary history. Plant Mol Biol Report 35:237–251

    Article  CAS  Google Scholar 

  • Singh S, Das S, Geeta R (2018) A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. Mol Phylogenet Evol 126:331–345

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207:454–467

    Article  PubMed  Google Scholar 

  • Valouev IA, Kushnirov VV, Ter-Avanesyan MD (2002) Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cytoskeleton 52:161–173

    Article  CAS  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  CAS  PubMed  Google Scholar 

  • Vanneste K, Baele G, Maere S, Van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Res 24:1334–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Adams KL (2015) Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica. Genome Biol Evol 7:646–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Huang S (2011a) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI, Francis A, Gugel RK (2009) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae). Agriculture and Agri-Food Canada, Canada

    Google Scholar 

  • Woodger FJ, Millar A, Murray F, Jacobsen JV, Gubler F (2003) The role of GAMYB transcription factors in GA-regulated gene expression. J Plant Growth Regul 22:176–184

    Article  CAS  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Reichel M, Deveson I, Wong G, Li J, Millar AA (2017) Target RNA secondary structure is a major determinant of miR159 efficacy. Plant Physiol 174:1764–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by a DBT Grant number BT/PR628/AGR/36/674/2011 to SD. Financial assistance in the form of JRF/SRF to SA from DBT and non-NET fellowship to ML from DU/UGC is gratefully acknowledged. SD would also like to acknowledge Delhi University for the financial and infrastructural support through R&D Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Akhilesh K. Tyagi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2019_1540_MOESM1_ESM.ai

Reconstruction of phylogenetic relationship among homologs and homeologs of MIR159A, MIR159B and MIR159C across Brassicaceae using GTR and doublet model of Bayesian method. Homologs and homeologs of MIR159A-MIR159B can be observed forming sister clade. Within each branch, genome and sub-genome (LF/MF1/MF2) specific clustering can be observed reflecting that the MIR159A-MIR519B paralogy occurred in the ancestral Brassicaceae and precedes genome duplication. (AI 190 KB)

438_2019_1540_MOESM2_ESM.ai

Micro-synteny analysis across genomic regions (100 kb) flanking MIR159B(A) and MIR159C(B) from different genomes of Brassicaceae showing duplication, losses and rearrangement of Protein coding genes, and MIRNA in A. thaliana and their homologs are represented by different colours, and connected. Genes unique to a particular genomic segment are marked by black arrows. Details of genes in each genome and alphabetical letters marking specific duplications and insertion are discussed in detail in text, and in supplementary table 3 and 4. A: Black square blocks marked as A and B show Capsella grandiflora specific segmental duplication; black oval region show BB genome specific duplication in B. juncea and B. nigra. Rounded rectangle indicates A. thaliana specific gene duplication. (AI 1082 KB)

438_2019_1540_MOESM3_ESM.ai

Graphical representation of percentage conservation of genes predicted by AVID/VISTA and FGENESH analysis in homologous and homeologous genomic segments harbouring MIR159A (A), MIR159B (B) and MIR159C (C) across 14 genomes (A. lyrata, C. rubella, C. sativa, B. rapa, B. oleracea, B. napus, B. juncea, B. nigra, S.irio, T. halophila, T. salsuginea, B. sricta, C. grandiflora, and A. arabicum). (AI 2713 KB)

438_2019_1540_MOESM4_ESM.ai

Graphical representation of gene density (one gene per xx kb) in homologous and homeologous genomic segments harbouring miR159A (A), miR159B (B) and miR159C (C) across 14 genomes (A. lyrata, C. rubella, C. sativa, B.rapa, B. oleracea, B. napus, B. juncea, B. nigra, S. irio, T. halophila, T. salsuginea, B. sricta, C. grandiflora, and A. arabicum). (AI 5031 KB)

438_2019_1540_MOESM5_ESM.ai

Impact of genome fractionation on three sub-genomes (LF, MF1 and MF2) of B. rapa (I), B. oleracea (II), B. napus A (III), B. napus C (IV) and C. sativa (V) harbouring MIR159A. Alphabetical letters represent various genes exhibiting retention and the losses (explained in text, and supplementary tables 5, 6) (AI 1133 KB)

438_2019_1540_MOESM6_ESM.ai

Impact of genome fractionation on three sub-genomes (LF, MF1 and MF2) of B. rapa (I), B. oleracea (II), B. napus A (III), B. napus C (IV) and C. sativa (V) harbouring MIR159B. Alphabetical letters represent various genes exhibiting retention and the losses (explained in text, and supplementary tables 5, 6). (AI 1120 KB)

438_2019_1540_MOESM7_ESM.ai

Impact of genome fractionation on three sub-genomes (LF, MF1 and MF2) of B. rapa (I), B. oleracea (II), B. napus A (III), B. napus C (IV) and C. sativa (V) harbouring MIR159C. Alphabetical letters represent various genes exhibiting retention and the losses (explained in text, and supplementary tables 5, 6). (AI 1242 KB)

438_2019_1540_MOESM8_ESM.ppt

Sequence polymorphism in mature 21-nt miR159A, miR159B and miR159C (A) and miRNA binding site (MBS) in the target transcription factors- MYB33, MYB65 and MYB101 (B) across selected members of Brassicaceae. (PPT 516 KB)

Supplementary material 9 (XLSX 19 KB)

Supplementary material 10 (XLSX 17 KB)

Supplementary material 11 (XLSX 11 KB)

Supplementary material 12 (XLSX 11 KB)

Supplementary material 13 (XLSX 20 KB)

Supplementary material 14 (XLSX 72 KB)

Supplementary material 15 (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Lal, M. & Das, S. Comparative genomics reveals origin of MIR159AMIR159B paralogy, and complexities of PTGS interaction between miR159 and target GA-MYBs in Brassicaceae. Mol Genet Genomics 294, 693–714 (2019). https://doi.org/10.1007/s00438-019-01540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-019-01540-4

Keywords

Navigation