Skip to main content

Advertisement

Log in

Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Fatty acids (FAs) are essential for membrane lipids biosynthesis and energy consumption in cancer cells. De novo FAs synthesis is catalyzed by fatty acid synthase (FASN), which is overexpressed and correlates with histological grade in glioma. Herein, we focused on the role of FASN in glioma neovascularization.

Methods

The expression levels of FASN, Ki67 and CD34 were determined using immunohistochemistry (IHC). FASN specific-targeted shRNA and C75 were applied to evaluate the influence of FASN on glioma stem cell proliferation, migration and tube formation ability in vitro. An intracranial glioma model was established to study the effects of FASN on tumor growth and neovascularization in vivo.

Results

IHC staining showed that the expression level of FASN correlated with tumor grade, Ki67 levels and microvessels density (MVD) in human gliomas. Inhibition of FASN using shRNAs or C75 decreased tumor growth, prolonged the overall survival of xenograft mice and decreased MVD in brain tumor sections. Moreover, inhibition of FASN blocked hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGF-A) signaling and upregulated the anti-angiogenic isoform-VEGF165b.

Conclusion

Our results suggest that FASN plays a pivotal role in glioma neovascularization, and inhibition of FASN may be a potential target for anti-angiogenic therapy for glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alli PM, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP (2005) Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 24:39–46. doi:10.1038/sj.onc.1208174

    Article  CAS  PubMed  Google Scholar 

  • Bian Y, Yu Y, Wang S, Li L (2015) Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem Biophys Res Commun 463:612–617. doi:10.1016/j.bbrc.2015.05.108

    Article  CAS  PubMed  Google Scholar 

  • Bottini A, Berruti A, Bersiga A, Brizzi MP, Allevi G, Bolsi G, Aguggini S, Brunelli A, Betri E, Generali D, Scaratti L, Bertoli G, Alquati P, Dogliotti L (2002) Changes in microvessel density as assessed by CD34 antibodies after primary chemotherapy in human breast cancer. Clin Cancer Res 8:1816–1821

    CAS  PubMed  Google Scholar 

  • Browne CD, Hindmarsh EJ, Smith JW (2006) Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J 20:2027–2035. doi:10.1096/fj.05-5404com

    Article  CAS  PubMed  Google Scholar 

  • Camassei FD, Cozza R, Acquaviva A, Jenkner A, Rava L, Gareri R, Donfrancesco A, Bosman C, Vadala P, Hadjistilianou T, Boldrini R (2003) Expression of the lipogenic enzyme fatty acid synthase (FAS) in retinoblastoma and its correlation with tumor aggressiveness. Invest Ophthalmol Vis Sci 44:2399–2403. doi:10.1002/mpo.10274

    Article  PubMed  Google Scholar 

  • Grube S, Dunisch P, Freitag D, Klausnitzer M, Sakr Y, Walter J, Kalff R, Ewald C (2014) Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis. J Neurooncol 118:277–287. doi:10.1007/s11060-014-1452-z

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Rupert JL, Goldenberg L, Gleave M, Kozlowski P (2002) Going malignant: the hypoxia-cancer connection in the prostate. BioEssays 24:749–757. doi:10.1002/bies.10131

    Article  CAS  PubMed  Google Scholar 

  • Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    Article  CAS  PubMed  Google Scholar 

  • Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF (2000) An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 92:326–333. doi:10.3171/jns.2000.92.2.0326

    Article  CAS  PubMed  Google Scholar 

  • Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han WF, Pizer ES (2001) Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res 61:1493–1499

    CAS  PubMed  Google Scholar 

  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820. doi:10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  • Macarthur KM, Kao GD, Chandrasekaran S, Alonso-Basanta M, Chapman C, Lustig RA, Wileyto EP, Hahn SM, Dorsey JF (2014) Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res 74:2152–2159. doi:10.1158/0008-5472.CAN-13-0813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao XG, Xue XY, Wang L, Zhang X, Yan M, Tu YY, Lin W, Jiang XF, Ren HG, Zhang W, Song SJ (2013) CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro Oncol 15:865–879. doi:10.1093/neuonc/not029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777. doi:10.1038/nrc2222

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Vellon L, Oza BP, Lupu R (2005) Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1alpha (HIF-1alpha)-related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing her-2/neu oncogene. J Cell Biochem 94:857–863. doi:10.1002/jcb.20367

    Article  CAS  PubMed  Google Scholar 

  • Peiris-Pages M (2012) The role of VEGF 165b in pathophysiology. Cell Adhes Migr 6:561–568. doi:10.4161/cam.22439

    Article  Google Scholar 

  • Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56:2745–2747

    CAS  PubMed  Google Scholar 

  • Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF (1998) Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58:4611–4615

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi:10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828. doi:10.1038/nature09557

    Article  CAS  PubMed  Google Scholar 

  • Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, Chudzinski-Tavassi AM, Coletta RD, Graner E (2012) The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br J Cancer 107:977–987. doi:10.1038/bjc.2012.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108:4274–4280. doi:10.1073/pnas.1016030108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao BB, He H, Shi XH, Wang CL, Li WQ, Li B, Dong Y, Hu GH, Hou LJ, Luo C, Chen JX, Chen HR, Yu YH, Sun QF, Lu YC (2013) Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 20:717–720. doi:10.1016/j.jocn.2012.03.050

    Article  CAS  PubMed  Google Scholar 

  • Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Buckley D, Kemble G, Heuer TS (2015) Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2:808–824. doi:10.1016/j.ebiom.2015.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakamiya T, Suzuki SO, Hamasaki H, Honda H, Mizoguchi M, Yoshimoto K, Iwaki T (2014) Elevated expression of fatty acid synthase and nuclear localization of carnitine palmitoyltransferase 1C are common among human gliomas. Neuropathology 34:465–474. doi:10.1111/neup.12132

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833. doi:10.1038/nature09624

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Dirks PB (2007) Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol 2:175–189. doi:10.1146/annurev.pathol.2.010506.091847

    Article  CAS  PubMed  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  • Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, Ogata M, Katsuyama Y, Sadahiro H, Suzuki M, Owada Y (2016) Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS ONE 11:e0147717. doi:10.1371/journal.pone.0147717

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O’Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY, Evers BM (2012) Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res 72:1504–1517. doi:10.1158/0008-5472.CAN-11-4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaytseva YY, Elliott VA, Rychahou P, Mustain WC, Kim JT, Valentino J, Gao T, O’Connor KL, Neltner JM, Lee EY, Weiss HL, Evers BM (2014) Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis 35:1341–1351. doi:10.1093/carcin/bgu042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Dong J, Huang Q, Lou M, Wang A, Lan Q (2010) Endothelial cell transdifferentiation of human glioma stem progenitor cells in vitro. Brain Res Bull 82:308–312. doi:10.1016/j.brainresbull.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Han WF, Landree LE, Thupari JN, Pinn ML, Bililign T, Kim EK, Vadlamudi A, Medghalchi SM, El Meskini R, Ronnett GV, Townsend CA, Kuhajda FP (2007) Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res 67:2964–2971. doi:10.1158/0008-5472.CAN-06-3439

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Jin G, Mi R, Dong C, Zhang J, Liu F (2014) The methylation status of the platelet-derived growth factor-B gene promoter and its regulation of cellular proliferation following folate treatment in human glioma cells. Brain Res 1556:57–66. doi:10.1016/j.brainres.2014.01.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. L Luo, GL Li and L Xu (Pathological Department, Beijing Neurosurgical Institute) for evaluating human and mouse glioma specimens.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81372354, 81302186), the Beijing Municipal Natural Science Foundation (No. 7151002), the Beijing Health System High-level Personnel Building Foundation (No. 2013-3-018), the Beijing Laboratory of Biomedical Materials Foundation (PXM2014_014226_000005) and the Beijing Municipal Administration of Hospitals’ Youth Program (No. QML20150505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Liu.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Ethics approval

The glioma tissue collection was approved by the Institutional Review Board of Beijing Tiantan Hospital affiliated to Capital Medical University. The Experimental Animal Ethics Committee of Beijing Neurosurgical Institute approved the use of laboratory animals. All animal experiments followed the NIH Guide for the Care and Use of Laboratory Animals (No. 2014-02016).

Informed consent

Informed consents were prospectively obtained from all individual participants in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Jin, G., Mi, R. et al. Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma. J Cancer Res Clin Oncol 142, 2447–2459 (2016). https://doi.org/10.1007/s00432-016-2249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2249-6

Keywords

Navigation