Skip to main content

Advertisement

Log in

Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

CA-125 has been a valuable marker for detecting ovarian cancer, however, it is not sensitive enough to detect early-stage disease and not specific to ovarian cancer. The purpose of our study was to identify autoantibody markers that are specific to ovarian cancer regardless of CA-125 levels.

Methods

Top-down and iTRAQ quantitative proteomics methods were used to identify high-frequency autoantibodies in ovarian cancer. Protein microarrays comprising the recombinant autoantigens were screened using serum samples from various stages of ovarian cancer with diverse levels of CA-125 as well as benign and healthy controls. ROC curve and dot blot analyses were performed to validate the sensitivity and specificity of the autoantibody markers.

Results

The proteomics methodologies identified more than 60 potential high-frequency autoantibodies in ovarian cancer. Individual serum samples from ovarian cancer stages I–IV compared to control samples that were screened on a microarray containing native recombinant autoantigens revealed a panel of stage I high-frequency autoantibodies. Preliminary ROC curve and dot blot analyses performed with the ovarian cancer samples showed higher specificity and sensitivity as compared to CA-125. Three autoantibody markers exhibited higher specificity in various stages of ovarian cancer with low and normal CA-125 levels.

Conclusions

Proteomics technologies are suitable for the identification of protein biomarkers and also the identification of autoantibody biomarkers when combined with protein microarray screening. Using native recombinant autoantigen arrays to screen autoantibody markers, it is possible to identify markers with higher sensitivity and specificity than CA-125 that are relevant to early detection of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abendstein B, Marth C, Muller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG (2000) Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma. Cancer 88(6):1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal K, Choe LH, Lee KH (2005) Quantitative analysis of protein expression using amine-specific isobaric tags in Escherichia coli cells expressing rhsA elements. Proteomics 5(9):2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  PubMed  CAS  Google Scholar 

  • Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4(4):1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Blaes F, Klotz M, Huwer H, Straub U, Kalweit G, Schimrigk K, Schafers HJ (2000) Antineural and antinuclear autoantibodies are of prognostic relevance in non-small cell lung cancer. Ann Thorac Surg 69(1):254–258

    Article  PubMed  CAS  Google Scholar 

  • Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG, Hanash SM (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA 98(17):9824–9829

    Article  PubMed  CAS  Google Scholar 

  • Burnham TK (1972) Antinuclear antibodies in patients with malignancies. Lancet 2(7774):436

    Article  PubMed  CAS  Google Scholar 

  • Caiazzo RJ Jr, O’Rourke DJ, Barder TJ, Nelson BP, Liu BC (2011) Native antigen fractionation protein microarrays for biomarker discovery. Methods Mol Biol (Clifton, NJ) 723:129–148

    Article  CAS  Google Scholar 

  • Canelle L, Bousquet J, Pionneau C, Deneux L, Imam-Sghiouar N, Caron M, Joubert-Caron R (2005) An efficient proteomics-based approach for the screening of autoantibodies. J Immunol Methods 299(1–2):77–89. doi:10.1016/j.jim.2005.01.015

    Google Scholar 

  • Caron M, Choquet-Kastylevsky G, Joubert-Caron R (2007) Cancer Immunomics Using Autoantibody Signatures for Biomarker Discovery. Mol Cell Proteomics 6(7):1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Chaib H, Rubin MA, Mucci NR, Li L, Taylor JMG, Day ML, Rhim JS, Macoska JA (2001) Activated in prostate cancer: a PDZ domain-containing protein highly expressed in human primary prostate tumors. Cancer Res 61(6):2390–2394

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Mohapatra S, Ionan A, Bawa G, Ali-Fehmi R, Wang X, Nowak J, Ye B, Nahhas FA, Lu K, Witkin SS, Fishman D, Munkarah A, Morris R, Levin NK, Shirley NN, Tromp G, Abrams J, Draghici S, Tainsky MA (2006) Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res 66(2):1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, Brand RE, Haab BB (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 4(5):437–444. doi:10.1038/nmeth1035

    Google Scholar 

  • Chen Z, Fadiel A, Feng Y, Ohtani K, Rutherford T, Naftolin F (2001) Ovarian epithelial carcinoma tyrosine phosphorylation, cell proliferation, and ezrin translocation are stimulated by interleukin 1alpha and epidermal growth factor. Cancer 92(12):3068–3075

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich JR, Qin S, Liu BC (2006) The ‘reverse capture’ autoantibody microarray: a native antigen-based platform for autoantibody profiling. Nat Protoc 1(1):452–460

    Article  PubMed  CAS  Google Scholar 

  • Ferrini R (1997) Screening asymptomatic women for ovarian cancer: American College of Preventive Medicine practice policy. Am J Prev Med 13(6):444–446

    PubMed  CAS  Google Scholar 

  • Fossa A, Alsoe L, Crameri R, Funderud S, Gaudernack G, Smeland EB (2004) Serological cloning of cancer/testis antigens expressed in prostate cancer using cDNA phage surface display. Cancer Immunol Immunother 53(5):431–438

    Article  PubMed  CAS  Google Scholar 

  • Gagnon A, Kim JH, Schorge JO, Ye B, Liu B, Hasselblatt K, Welch WR, Bandera CA, Mok SC (2008) Use of a combination of approaches to identify and validate relevant tumor-associated antigens and their corresponding autoantibodies in ovarian cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 14(3):764–771

    Article  CAS  Google Scholar 

  • Gautreau A, Louvard D, Arpin M (2002) ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol 14(1):104–109

    Article  PubMed  CAS  Google Scholar 

  • Gercel-Taylor C, Bazzett LB, Taylor DD (2001) Presence of aberrant tumor-reactive immunoglobulins in the circulation of patients with ovarian cancer. Gynecol Oncol 81(1):71–76

    Article  PubMed  CAS  Google Scholar 

  • Gure AO, Altorki NK, Stockert E, Scanlan MJ, Old LJ, Chen YT (1998) Human lung cancer antigens recognized by autologous antibodies: definition of a novel cDNA derived from the tumor suppressor gene locus on chromosome 3p21.3. Cancer Res 58(5):1034–1041

    PubMed  CAS  Google Scholar 

  • Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4(4):377–383

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Hays JL, Kim G, Giuroiu I, Kohn EC (2010) Proteomics and ovarian cancer: integrating proteomics information into clinical care. J Proteomics 73(10):1864–1872

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa Y, Kohno N, Yokoyama A, Kondo K, Hiwada K, Miyake M (2000) Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am J Respir Crit Care Med 161(2 Pt 1):589–594

    Article  PubMed  CAS  Google Scholar 

  • Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P (2005) Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16(2):649–664

    Article  PubMed  CAS  Google Scholar 

  • Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187(2):265–270

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Le Naour F, Brichory F, Misek DE, Brechot C, Hanash SM, Beretta L (2002) A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics 1(3):197–203

    Article  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  PubMed  CAS  Google Scholar 

  • Li M, Yin J, Mao N, Pan L (2013) Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep 29(1):58–66

    PubMed  Google Scholar 

  • Luborsky JL, Barua A, Shatavi SV, Kebede T, Abramowicz J, Rotmensch J (2005) Anti-tumor antibodies in ovarian cancer. Am J Reprod Immunol 54(2):55–62

    Article  PubMed  CAS  Google Scholar 

  • Luo LY, Herrera I, Soosaipillai A, Diamandis EP (2002) Identification of heat shock protein 90 and other proteins as tumour antigens by serological screening of an ovarian carcinoma expression library. Br J Cancer 87(3):339–343

    Article  PubMed  CAS  Google Scholar 

  • Maddison P, Newsom-Davis J, Mills KR, Souhami RL (1999) Favourable prognosis in Lambert-Eaton myasthenic syndrome and small-cell lung carcinoma. Lancet 353(9147):117–118

    Article  PubMed  CAS  Google Scholar 

  • Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, Yue L, Bray-Ward P, Ward DC (2005) Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A 102(21):7677–7682

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Pillasch F, Lacher U, Wallrapp C, Micha A, Zimmerhackl F, Hameister H, Varga G, Friess H, Buchler M, Beger HG, Vila MR, Adler G, Gress TM (1997) Cloning of a gene highly over-expressed in cancer coding for a novel KH-domain containing protein. Oncogene 14(22):2729–2733

    Article  PubMed  CAS  Google Scholar 

  • Naora H, Montz FJ, Chai CY, Roden RB (2001) Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci USA 98(26):15209–15214

    Article  PubMed  CAS  Google Scholar 

  • Nesterova M, Johnson N, Cheadle C, Cho-Chung YS (2006) Autoantibody biomarker opens a new gateway for cancer diagnosis. Biochim Biophys Acta 1762(4):398–403

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S, Tsuda H, Kataoka F, Arao T, Nomura H, Chiyoda T, Susumu N, Nishio K, Aoki D (2011) Over-expression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Hum Pathol 42(4):516–521

    Article  PubMed  CAS  Google Scholar 

  • Nossov V, Amneus M, Su F, Lang J, Janco JM, Reddy ST, Farias-Eisner R (2008) The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am J Obstet Gynecol 199(3):215–223

    Article  PubMed  CAS  Google Scholar 

  • Ohtani K, Sakamoto H, Rutherford T, Chen Z, Satoh K, Naftolin F (1999) Ezrin, a membrane-cytoskeletal linking protein, is involved in the process of invasion of endometrial cancer cells. Cancer Lett 147(1–2):31–38

    Article  PubMed  CAS  Google Scholar 

  • Old LJ, Chen YT (1998) New paths in human cancer serology. J Exp Med 187(8):1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Partridge E, Kreimer AR, Greenlee RT, Williams C, Xu JL, Church TR, Kessel B, Johnson CC, Weissfeld JL, Isaacs C, Andriole GL, Ogden S, Ragard LR, Buys SS (2009) Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol 113(4):775–782

    PubMed  CAS  Google Scholar 

  • Piver MS, Wong C (1998) Role of prophylactic surgery for women with genetic predisposition to cancer. Clin Obstet Gynecol 41(1):215–224

    Article  PubMed  CAS  Google Scholar 

  • Polesello C, Delon I, Valenti P, Ferrer P, Payre F (2002) Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 4(10):782–789

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Callow M, Stevenson S, Scott B, Robinson BW, Lake RA (2000) Serologic responses in patients with malignant mesothelioma: evidence for both public and private specificities. Am J Respir Cell Mol Biol 22(5):550–556

    Article  PubMed  CAS  Google Scholar 

  • Rosen DG, Wang L, Atkinson JN, Yu Y, Lu KH, Diamandis EP, Hellstrom I, Mok SC, Liu J, Bast RC Jr (2005) Potential markers that complement expression of CA-125 in epithelial ovarian cancer. Gynecol Oncol 99(2):267–277

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92(25):11810–11813

    Article  PubMed  CAS  Google Scholar 

  • Sasaroli DCG, Scholler N (2009) Beyond CA-125: the coming of age of ovarian cancer biomarkers. Are we there yet? Biomark Med 3:275–288

    Article  PubMed  CAS  Google Scholar 

  • Shetty V, Hafner J, Shah P, Nickens Z, Philip R (2012) Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics 9(1):10

    Article  PubMed  Google Scholar 

  • Song J, Fadiel A, Edusa V, Chen Z, So J, Sakamoto H, Fishman DA, Naftolin F (2005) Estradiol-induced ezrin over-expression in ovarian cancer: a new signaling domain for estrogen. Cancer Lett 220(1):57–65

    Article  PubMed  CAS  Google Scholar 

  • Soussi T (2000) p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 60(7):1777–1788

    PubMed  CAS  Google Scholar 

  • Suzuki H, Akakura K, Igarashi T, Ueda T, Ito H, Watanabe M, Nomura F, Ochiai T, Shimada H (2004) Clinical usefulness of serum antip53 antibodies for prostate cancer detection: a comparative study with prostate specific antigen parameters. J Urol 171(1):182–186

    Article  PubMed  CAS  Google Scholar 

  • Tan EM (1991) Autoantibodies in pathology and cell biology. Cell 67(5):841–842

    Article  PubMed  CAS  Google Scholar 

  • Tan EM, Chan EK, Sullivan KF, Rubin RL (1988) Antinuclear antibodies (ANAs): diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol 47(2):121–141

    Article  PubMed  CAS  Google Scholar 

  • Taylor DD, Gercel-Taylor C (1998) Tumor-reactive immunoglobulins in ovarian cancer: diagnostic and therapeutic significance? (review). Oncol Rep 5(6):1519–1524

    PubMed  CAS  Google Scholar 

  • Taylor DD, Gercel-Taylor C, Parker LP (2009) Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol Oncol 115(1):112–120

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9(4):138–141

    Article  PubMed  CAS  Google Scholar 

  • Vogl FD, Stickeler E, Weyermann M, Kohler T, Grill HJ, Negri G, Kreienberg R, Runnebaum IB (1999) p53 autoantibodies in patients with primary ovarian cancer are associated with higher age, advanced stage and a higher proportion of p53-positive tumor cells. Oncology 57(4):324–329

    Article  PubMed  CAS  Google Scholar 

  • Vogl FD, Frey M, Kreienberg R, Runnebaum IB (2000) Autoimmunity against p53 predicts invasive cancer with poor survival in patients with an ovarian mass. Br J Cancer 83(10):1338–1343

    Article  PubMed  CAS  Google Scholar 

  • von Mensdorff-Pouilly S, Petrakou E, Kenemans P, van Uffelen K, Verstraeten AA, Snijdewint FG, van Kamp GJ, Schol DJ, Reis CA, Price MR, Livingston PO, Hilgers J (2000) Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. Int J Cancer 86(5):702–712

    Article  Google Scholar 

  • Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, Mehra R, Montie JE, Pienta KJ, Sanda MG, Kantoff PW, Rubin MA, Wei JT, Ghosh D, Chinnaiyan AM (2005) Autoantibody signatures in prostate cancer. N Engl J Med 353(12):1224–1235

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168(3):441–452

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Shimizu E, Ogura T, Sone S (1996) Detection of auto-antibodies against L-myc oncogene products in sera from lung cancer patients. Int J Cancer 69(4):283–289

    Article  PubMed  CAS  Google Scholar 

  • Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK (2005) The motility of glioblastoma tumour cells is modulated by intracellular cofilin expression in a concentration-dependent manner. Cell Motil Cytoskelet 60(3):153–165

    Article  CAS  Google Scholar 

  • Zhang JY, Casiano CA, Peng XX, Koziol JA, Chan EK, Tan EM (2003) Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol Biomarkers Prev 12(2):136–143

    PubMed  CAS  Google Scholar 

  • Zhang Z, Bast RC Jr, Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY, Berchuck A, Van Haaften-Day C, Hacker NF, de Bruijn HW, van der Zee AG, Jacobs IJ, Fung ET, Chan DW (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64(16):5882–5890

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Fukada K, Zhu H, Kyprianou N (2006) Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res 66(17):8640–8647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USAMRAA Grant W81XWH-10-1-0307.

Conflict of interest

No actual or potential conflict of interest in relation to this article exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramila Philip.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabudak, A.A., Hafner, J., Shetty, V. et al. Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels. J Cancer Res Clin Oncol 139, 1757–1770 (2013). https://doi.org/10.1007/s00432-013-1501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1501-6

Keywords

Navigation