Skip to main content

Advertisement

Log in

ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cathepsin and plasmin may favor cancer cell invasion degrading extracellular matrix. Plasmin formation from plasminogen is regulated by plasminogen activator inhibitor type-1 (PAI-1). ARNTL2 activates the promoters of the PAI-1 gene, officially called SERPINE1, driving the circadian variation in circulating PAI-1 levels.

Methods

We evaluated ARNTL2 and SERPINE1 expression in 50 colorectal cancer specimens and adjacent normal tissue and in colon cancer cell lines.

Results

We found up-regulation of ARNTL2 (P = 0.004) and SERPINE1 (P = 0.002) in tumor tissue. A statistically significant association was found between high ARNTL2 mRNA levels and vascular invasion (P < 0.0001), and between high SERPINE1 mRNA levels and microsatellite instability (MSI-H and MSI-L, P = 0.025). Sorting the subjects into quartile groups, a statistically significant association was found between high ARNTL2 expression and lymph node involvement (P < 0.001), between high SERPINE1 expression and grading (P < 0.001) and between high SERPINE1 expression and MSI H–L (P < 0.0001). In SW480 cells, a more proliferative model compared to CaCo2 cells, there were higher mRNA levels of ARNTL2 (P < 0.001) and SERPINE1 (P = 0.001).

Conclusion

ARNTL2 and SERPINE1 expression is increased in colorectal cancer and in a highly proliferative colon cancer cell line and is related to tumor invasiveness and aggressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agostino PV, Harrington ME, Ralph MR, Golombek DA (2009) Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol Int 26:126–133

    Article  PubMed  CAS  Google Scholar 

  • Andreasen PA (2007) PAI-1—a potential therapeutic target in cancer. Curr Drug Targets 8(9):1030–1041

    Article  PubMed  CAS  Google Scholar 

  • Angleton P, Chandler WL, Schmer G (1989) Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 79:101–106

    Article  PubMed  CAS  Google Scholar 

  • Bajou K, Masson V, Gerard RD, Schmitt PM, Albert V, Praus M, Lund LR, Frandsen TL, Brunner N, Dano K, Fusenig NE, Weidle U, Carmeliet G, Loskutoff D, Collen D, Carmeliet P, Foidart JM, Noël A (2001) The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 152(4):777–784

    Article  PubMed  CAS  Google Scholar 

  • Bertagnolli MM, Niedzwiecki D, Compton CC, Hahn HP, Hall M, Damas B, Jewell SD, Mayer RJ, Goldberg RM, Saltz LB, Warren RS, Redston M (2009) Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: cancer and Leukemia Group B Protocol 89803. J Clin Oncol 27:1814–1821

    Article  PubMed  CAS  Google Scholar 

  • Beyer BC, Heiss MM, Simon EH, Gruetzner KU, Babic R, Jauch KW, Schildberg FW, Allgayer H (2006) Urokinase system expression in gastric carcinoma: prognostic impact in an independent patient series and first evidence of predictive value in preoperative biopsy and intestinal metaplasia specimens. Cancer 106:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Boland CR, Thibodeau SN, Hamilton SR (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  • Cale JM, Li SH, Warnock M, Su EJ, North PR, Sanders KL, Puscau MM, Emal CD, Lawrence DA (2010) Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem 285(11):7892–7902

    Article  PubMed  CAS  Google Scholar 

  • Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One 6:e20456

    Article  PubMed  CAS  Google Scholar 

  • Charfi C, Voisin V, Levros LC Jr, Edouard E, Rassart E (2011) Gene profiling of Graffi murine leukemia virus-induced lymphoid leukemias: identification of leukemia markers and Fmn2 as a potential oncogene. Blood 117(6):1899–1910

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Yoshida K, Narahara S, Uchikawa M, Kawamura M, Yamauchi N, Xi Y, Shigeyoshi Y, Hashimoto S, Hattori MA (2011) Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol Int 28:477–487

    Article  PubMed  CAS  Google Scholar 

  • Compton CC (2003) Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol 16:376–388

    Article  PubMed  Google Scholar 

  • Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N (2010) Colorectal cancer. Lancet 375:1030–1047

    Article  PubMed  Google Scholar 

  • Czekay RP, Loskutoff DJ (2009) Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. J Cell Physiol 220(3):655–663

    Article  PubMed  CAS  Google Scholar 

  • Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ (2003) Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 160(5):781–791

    Article  PubMed  CAS  Google Scholar 

  • Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24:195–213

    Article  PubMed  CAS  Google Scholar 

  • Darmoul D, Marie J-C, Devaud H, Gratio V, Laburthe M (2001) Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. Br J Cancer 85:772–779

    Article  PubMed  CAS  Google Scholar 

  • Dorn J, Harbeck N, Kates R, Magdolen V, Grass L, Soosaipillai A, Schalfeldt B, Diamandis EP, Schmitt M (2006) Disease processes may be reflected by correlations among tissue kallikrein proteases but not proteolytic factors UPA and PAI-1 in primary ovarian carcinoma. Biol Chem 387:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26:1479–1513

    Article  PubMed  CAS  Google Scholar 

  • Dutta P, Koch A, Breyer B, Schneider H, Dittrich-Breiholz O, Kracht M, Tamura T (2011) Identification of novel target genes of nerve growth factor (NGF) in human mastocytoma cell line (HMC-1 (V560G c-Kit)) by transcriptome analysis. BMC Genomics 12:196

    Article  PubMed  CAS  Google Scholar 

  • Edery I (2000) Circadian rhythms in a nutshell. Physiol Genomics 3:59–74

    PubMed  CAS  Google Scholar 

  • Einholm AP, Pedersen KE, Wind T, Kulig P, Overgaard MT, Jensen JK, Bødker JS, Christensen A, Charlton P, Andreasen PA (2003) Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1. Biochem J 373(Pt 3):723–732

    Article  PubMed  CAS  Google Scholar 

  • Erren TC, Groß JV, Meyer-Rochow VB (2011) Light, clocks, mood, and cancer: consolidation and novel tests of latitude and instability hypotheses. Chronobiol Int 28:471–473

    Article  PubMed  Google Scholar 

  • Filipski E, King VM, Li XM, Granda TG, Mormont MC, Liu X (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697

    Article  PubMed  Google Scholar 

  • Filipski E, King VM, Etienne MC, Li XM, Claustrat B, Granda TG (2004) Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am J Physiol Regul Integr Comp Physiol 287:R844–R851

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nature Rev Cancer 3:350–361

    Article  CAS  Google Scholar 

  • Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    Article  PubMed  CAS  Google Scholar 

  • Ganesh S, Sier CF, Heerding MM, van Krieken JH, Griffioen G, Welvaart K, van de Velde CJ, Verheijen JH, Lamers CB, Verspaget HW (1997) Contribution of plasminogen activators and their inhibitors to the survival prognosis of patients with Dukes’s stage B and C colorectal cancer. Br J Cancer 75:1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Article  PubMed  CAS  Google Scholar 

  • Hayashida S, Kuramoto Y, Koyanagi S, Oishi K, Fujiki J, Matsunaga N, Ikeda E, Ohdo S, Shimeno H, Soeda S (2010) Proxisome proliferator-activated receptor-α mediates high-fat, diet-enhanced daily oscillation of plasminogen activator inhibitor-1 activity in mice. Chronobiol Int 27:1735–1753

    Article  PubMed  CAS  Google Scholar 

  • Huang TS, Grodeland G, Sleire L, Wang MY, Kvalheim G, Laerum OD (2009) Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol Int 26:242–257

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Yu W, Hirai M, Ebisawa T, Honma S, Yoshimura K, Honma KI, Nomura M (2000) cDNA cloning of a novel bHLH-PAS transcription factor superfamily gene, BMAL2: its mRNA expression, subcellular distribution, and chromosomal localization. Biochem Biophys Res Commun 275:493–502

    Article  PubMed  CAS  Google Scholar 

  • Iurisci I, Filipski E, Sallam H, Harper F, Guettier C, Maire I, Hassan M, Iacobelli S, Lévi F (2009) Liver circadian clock, a pharmacologic target of cyclin-dependent kinase inhibitor seliciclib. Chronobiol Int 26:1169–1188

    PubMed  CAS  Google Scholar 

  • Iwamoto J, Mizokami Y, Takahashi K, Nakajima K, Ohtsubo T, Miura S, Narasaka T, Takeyama H, Omata T, Shimokobe K, Ito M, Takehara H, Matsuoka T (2005) Expressions of urokinase-type plasminogen activator, its receptor and plasminogen activator inhibitor-1 in gastric cancer and effects of Helicobacter pylori. Scand J Gastroenterol 40:783–793

    Article  PubMed  Google Scholar 

  • Jensen SA, Vainer B, Kruhøffer M, Sørensen JB (2009) Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression. BMC Cancer 20:e25

    Article  Google Scholar 

  • Jud C, Chappuis S, Revell VL, Sletten TL, Saaltink DJ, Cajochen C, Skene DJ, Albrecht U (2009) Age-dependent alterations in human PER2 levels after early morning blue light exposure. Chronobiol Int 26:1462–1469

    Article  PubMed  Google Scholar 

  • Khapre RV, Samsa WE, Kondratov RV (2010) Circadian regulation of cell cycle: molecular connections between aging and the circadian clock. Ann Med 42(6):404–415

    Article  PubMed  CAS  Google Scholar 

  • Kloog I, Haim A, Stevens RG, Portnov BA (2009) Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol Int 26:108–125

    Article  PubMed  Google Scholar 

  • Koch JM, Hagenauer MH, Lee TM (2009) The response of Per1 to light in the suprachiasmatic nucleus of the diurnal degu (Octodon degus). Chronobiol Int 26:1263–1271

    PubMed  CAS  Google Scholar 

  • Kurnik PB (1995) Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 91:1341–1346

    PubMed  CAS  Google Scholar 

  • Leibetseder V, Humpeler S, Svoboda M, Schmid D, Thalhammer T, Zuckermann A, Marktl W, Ekmekcioglu C (2009) Clock genes display rhythmic expression in human hearts. Chronobiol Int 26:621–636

    Article  PubMed  CAS  Google Scholar 

  • Leik CE, Su EJ, Nambi P, Crandall DL, Lawrence DA (2006) Effect of pharmacologic plasminogen activator inhibitor-1 inhibition on cell motility and tumor angiogenesis. J Thromb Haemost 4(12):2710–2715

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B (2009) Discoveries of rhythms in human biological functions: a historical review. Chronobiol Int 26:1019–1068

    PubMed  Google Scholar 

  • Lindberg P, Larsson A, Nielsen BS (2006) Expression of plasminogen activator inhibitor-1, urokinase receptor and laminin γ-2 chain is an early coordinated event in incipient oral squamous cell carcinoma. Int J Cancer 118:2948–2956

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Cai Y, Sothern RB, Guan Y, Chan P (2007) Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol Int 24:793–820

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Takahashi JS (2000) Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet 34:533–562

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Tian W, Cai L, Wang Y, Zhang J, Teng H, Du J, Sun ZS (2009) Expression profiling reveals a positive regulation by mPer2 on circadian rhythm of cytotoxicity receptors: Ly49C and Nkg2d. Chronobiol Int 26:1514–1544

    Article  PubMed  CAS  Google Scholar 

  • Madsen CD, Sidenius N (2008) The interaction between urokinase receptor and vitronectin in cell adhesion and signalling. Eur J Cell Biol 87(8–9):617–629

    Article  PubMed  CAS  Google Scholar 

  • Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM, Yet SF, Perrella MA, Lee ME (2000) CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 275:36847–36851

    Article  PubMed  CAS  Google Scholar 

  • Märkl B, Renk I, Oruzio DV, Jähnig H, Schenkirsch G, Schöler C, Ehret W, Arnholdt HM, Anthuber M, Spatz H (2010) Tumour budding, uPA and PAI-1 are associated with aggressive behaviour in colon cancer. J Surg Oncol 102:235–241

    Article  PubMed  Google Scholar 

  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259

    Article  PubMed  CAS  Google Scholar 

  • Mazzoccoli G (2011) The timing clockwork of life. J Biol Regul Homeost Agents 25:137–143

    PubMed  CAS  Google Scholar 

  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HJ, Pappot H, Christensen J, Brünner N, Thorlacius-Ussing O, Moesgaard F, Danø K, Grøndahl-Hansen J (1998) Association between plasma concentrations of plasminogen activator inhibitor-1 and survival in patients with colorectal cancer. BMJ 316:829–830

    Article  PubMed  CAS  Google Scholar 

  • Offersen BV, Pfeiffer P, Andreasen P, Overgaard J (2007) Urokinase plasminogen activator and plasminogen activator inhibitor type-1 in normal-cell lung cancer: relation to prognosis and angiogenesis. Lung Cancer 43:43–50

    Article  Google Scholar 

  • Oishi K (2009) Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin Exp Hypertens 31:208–219

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Miyazaki K, Uchida D, Ohkura N, Wakabayashi M, Doi R, Matsuda J, Ishida N (2009) PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice. J Mol Cell Cardiol 46:545–552

    Article  PubMed  CAS  Google Scholar 

  • Polidarová L, Soták M, Sládek M, Pacha J, Sumová A (2009) Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol Int 26:607–620

    Article  PubMed  Google Scholar 

  • Rodrigues RF, Roque L, Krug T, Leite V (2007) Poorly differentiated and anaplastic thyroid carcinomas: chromosomal and oligo-array profile of five new cell lines. Br J Cancer 96(8):1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara T, Hibi K, Koike M, Fujiwara M, Kodera Y, Ito K, Nakao A (2005) Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. Br J Cancer 93:799–803

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara T, Hibi K, Koike M, Fujiwara M, Kodera Y, Ito K, Nakao A (2006) Plasminogen activator inhibitor-1 as a potential marker for the malignancy of gastric cancer. Cancer Sci 97:395–399

    Article  PubMed  CAS  Google Scholar 

  • Samarakoon R, Higgins CE, Higgins SP, Higgins PJ (2009) TGF-beta1-induced expression of the poor prognosis SERPINE1/PAI-1 gene requires EGFR signaling: a new target for anti-EGFR therapy. J Oncol 2009:342391

    PubMed  Google Scholar 

  • Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y (2009) Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem 284:25149–25159

    Article  PubMed  CAS  Google Scholar 

  • Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111:919–922

    Article  PubMed  CAS  Google Scholar 

  • Schoenhard JA, Eren M, Johnson CH, Vaughan DE (2002) Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization. Am J Physiol Cell Physiol 283:C103–C114

    PubMed  CAS  Google Scholar 

  • Schoenhard JA, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE (2003) Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol 35:473–481

    Article  PubMed  CAS  Google Scholar 

  • Schwimmer H, Mursu N, Haim A (2010) Effects of light and melatonin treatment on body temperature and melatonin secretion daily rhythms in a diurnal rodent, the fat sand rat. Chronobiol Int 27:1401–1419

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, Johnson CH (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20:316–321

    Article  PubMed  CAS  Google Scholar 

  • Sier CF, Vloedgraven HJM, Ganesh S, Griffioen G, Quax PH, Verheijen JH, Dooijewaard G, Welvaart K, van de Velde CJ, Lamers CB (1994) Inactive urokinase and increased levels of its inhibitors type 1 in colorectal cancer liver metastasis. Gastroenterology 107:1449–1456

    PubMed  CAS  Google Scholar 

  • Speleman L, Kerrebijn JD, Look MP, Meeuwis CA, Fockens JA, Berns EM (2007) Prognostic value of plasminogen activator inhibitor-1 in head and neck squamous cell carcinoma. Head Neck 29:341–350

    Article  PubMed  Google Scholar 

  • Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775

    Article  PubMed  CAS  Google Scholar 

  • Talieri M, Papadopoulou S, Scorilas A, Xynopoulos D, Arnogianaki N, Plataniotis G, Yotis J, Agnanti N (2004) Cathepsin B and cathepsin D expression in the progression of colorectal adenoma to carcinoma. Cancer Lett 205:97–106

    Article  PubMed  CAS  Google Scholar 

  • Troy AM, Sheahan K, Mulcahy HE, Duffy MJ, Hyland JM, O’Donoughe DP (2004) Expression of cathepsin B and L antigen and activity is associated with early colorectal progression. Eur J Cancer 40:1610–1616

    Article  PubMed  CAS  Google Scholar 

  • Vial D, McKeown-Longo PJ (2008) PAI1 stimulates assembly of the fibronectin matrix in osteosarcoma cells through crosstalk between the alphavbeta5 and alpha5beta1 integrins. J Cell Sci 121(Pt 10):1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Wille JJ Jr (2003) Circadian rhythm of tumor promotion in the two-stage model of mouse tumorigenesis. Cancer Lett 190:143–149

    Article  PubMed  CAS  Google Scholar 

  • Wright CM, Dent OF, Newland RC, Barker M, Chapuis PH, Bokey EL, Young JP, Leggett BA, Jass JR, Macdonald GA (2005) Low level microsatellite instability may be associated with reduced cancer specific survival in sporadic stage C colorectal carcinoma. Gut 54:103–108

    Article  PubMed  CAS  Google Scholar 

  • Yamamura Y, Yano I, Kudo T, Shibata S (2010) Time-dependent inhibitory effect of lipopolysaccharide injection on Per1 and Per2 gene expression in the mouse heart and liver. Chronobiol Int 27:213–232

    Article  PubMed  CAS  Google Scholar 

  • Yeh CT, Lu SC, Tseng IC, Lai HY, Tsao ML, Huang SF, Liaw YF (2003) Antisense overexpression of BMAL2 enhances cell proliferation. Oncogene 22:5306–5314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “Italian Ministry of Health” grants RC0903GA51, RC1003GA52, RC1103GA47, and RC1103MI53 through Research Unit of Gastroenterology and Division of Internal Medicine, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Mazzoccoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoccoli, G., Pazienza, V., Panza, A. et al. ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer. J Cancer Res Clin Oncol 138, 501–511 (2012). https://doi.org/10.1007/s00432-011-1126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-011-1126-6

Keywords

Navigation