Skip to main content
Log in

Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why

  • Letter to the Editor
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andino-Pavlovsky V, Souza AC, Scheffer-Teixera R, Tort ABL, Etchenique R, Ribiero S (2017) Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Front Neural Circuits 11:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagur S, Benchenane K (2017) Taming the oscillatory zoo in the hippocampus and neo-cortex: a review of Lockammn and Tort on Roy et al. Brain Struct Funct. (in press)

  • Biskamp J, Bartos M, Sauer JF (2017) Organization of prefrontal network activity by respiration-related oscillations. Sci Rep 7:45508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower JM (1995) Reverse engineering the nervous system: an in vivo, in vitro, and in compute approach to understanding the mammalian olfactory system. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neurl and electronic networks. Academic Press, New York, pp 3–28

    Google Scholar 

  • Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424

    Article  CAS  PubMed  Google Scholar 

  • Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001

    CAS  PubMed  Google Scholar 

  • Fujisawa S, Buzsaki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebber GL, Barman SM (1977) Brain stem vasomotor circuits involved in the genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–75

    Article  CAS  PubMed  Google Scholar 

  • Gebber GL, Barman SM (1981) Sympathetic-related activity of brain stem neurons in baroreceptor-denervated cats. Am J Physiol 240:R348–R355

    CAS  PubMed  Google Scholar 

  • Gebber GL, Barman SM, Kocsis B (1990) Coherence of medullary unit activity and sympathetic nerve discharge. Am J Physiol 259:R561–R571

    CAS  PubMed  Google Scholar 

  • Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry 60:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OF, Antoniou K, Sousa N, Dalla C (2017) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 11:1–8 (Epub ahead of print)

    Google Scholar 

  • Kang D, Ding M, Topchiy I, Kocsis (2017) Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front Neuroanat. 11:120

  • Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19:605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409

    Article  CAS  PubMed  Google Scholar 

  • Kocsis K, Kaminski M (2006) Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus 16:531–540

    Article  PubMed  Google Scholar 

  • Lockmann ALV, Tort ABL (2017) Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct. (in press)

  • Lockmann AL, Laplagne DA, Leao RN, Tort AB (2016) A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci 36:5338–5352

    Article  CAS  PubMed  Google Scholar 

  • Lockmann ALV, Laplagne DA, Tort ABL (2017) Olfactory bulb drives respiration-coupled beta oscillations in the rat hippocampus. Eur J Neurosci. https://doi.org/10.1111/ejn.13665

  • Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B (2013) Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 4:191–199

    Article  CAS  PubMed  Google Scholar 

  • Pittman-Polletta BR, Kocsis B, Viayan S, Whittington MA, Kopell NJ (2015) Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 77:1020–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittman-Polletta BR, Hu K, Kocsis B (2017) Modeling the schizophrenias: subunit-specific NMDAR antagonism dissociates oscillatory signatures of frontal hypofunction and hippocampal hyperfunction. BioRxiv. https://doi.org/10.1101/191882

    Google Scholar 

  • Roy A, Svensson FP, Mazeh A, Kocsis B (2017) Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Struct Funct 222:2819–2830

    Article  PubMed  Google Scholar 

  • Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA 106:20942–20947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tort ABL, Ponsel S, Jessberger J, Yanovsky Y, Brankack J, Draguhn A (2017) Parallel occurrence of theta and respiration-coupled network oscillation throughout the mouse brain. BioRxiv. https://doi.org/10.1101/139485

    Google Scholar 

  • Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Viczko J, Sharma AV, Pagliardini S, Wolansky T, Dickson CT (2014) Lack of respiratory coupling with neocortical and hippocampal slow oscillations. J Neurosci 34:3937–3946

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Muller C, Ponsel S, Yanovsky Y, Brankack J, Tort ALB, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA 114:4519–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernat Kocsis.

Ethics declarations

Funding

This study was funded by the national Institute of Mental Health, USA (MH100820 to B.K.).

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and institutional guidelines for care and use of animals were followed. All procedures were approved by the Institutional Animal Care and Use Committee of the Beth Israel Deaconass Medical Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocsis, B., Pittman-Polletta, B.R. & Roy, A. Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why. Brain Struct Funct 223, 11–16 (2018). https://doi.org/10.1007/s00429-017-1587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1587-8

Navigation