Skip to main content
Log in

GABA is localized in dopaminergic synaptic vesicles in the rodent striatum

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Recently, electrophysiological evidence was given for inhibitory postsynaptic responses at dopaminergic striatal synapses. These responses were independent of the vesicular GABA transporter, VGAT, but dependent on the vesicular dopamine transporter VMAT2. The identity and the exact source of the released molecule, as well as the presence of the putative inhibitory transmitter in VMAT2 containing synaptic vesicles remain to be shown. To clarify this, in particular to determine whether GABA is responsible for the inhibitory response at dopaminergic synapses, we used the electron microscopic immunogold method to label in vivo perfusion fixed striatal tissue with antibodies recognising GABA, VGAT, VMAT2 and tyrosine hydroxylase. We show that about 13 % of tyrosine hydroxylase positive and 11 % of VMAT2 axonal terminals in the caudo-putamen contain significant labelling for GABA. Immunogold signals for tyrosine hydroxylase and VGAT was totally segregated into different pools of nerve terminals. Quantitative analyses of the distance between gold particles signalling GABA and synaptic vesicles showed that GABA was as closely associated with synaptic vesicles in tyrosine hydroxylase positive as in tyrosine hydroxylase negative nerve terminals. Likewise, in dopaminergic terminals GABA and VMAT2 immunogold particles showed a close spatial localization, strongly suggesting the presence of GABA in VMAT2 positive synaptic vesicles. Our results suggest that GABA is exocytosed together with dopamine from dopaminergic nerve terminals in the caudo-putamen through VGAT negative and VMAT2 positive synaptic vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alilain WJ, Horn KP, Hu H, Dick TE, Silver J (2011) Functional regeneration of respiratory pathways after spinal cord injury. Nature 475(7355):196–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arluison M, Dietl M, Thibault J (1984) Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry: a topographical study. Brain Res Bull 13(2):269–285

    Article  CAS  PubMed  Google Scholar 

  • Bennett BD, Bolam JP (1994) Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. Neuroscience 62(3):707–719

    Article  CAS  PubMed  Google Scholar 

  • Bergersen L, Ruiz A, Bjaalie JG, Kullmann DM, Gundersen V (2003) GABA and GABAA receptors at hippocampal mossy fibre synapses. Eur J Neurosci 18(4):931–941

    Article  PubMed  Google Scholar 

  • Bergersen LH, Storm-Mathisen J, Gundersen V (2008) Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat Protoc 3(1):144–152

    Article  CAS  PubMed  Google Scholar 

  • Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF, Roe AT, Stranna A, Santello M, Bouvier D, Ottersen OP, Volterra A, Gundersen V (2012) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22(7):1690–1697

    Article  CAS  PubMed  Google Scholar 

  • Beucher A, Gjernes E, Collin C, Courtney M, Meunier A, Collombat P, Gradwohl G (2012) The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. PLoS One 7(5):e36449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borisovska M, Bensen AL, Chong G, Westbrook GL (2013) Distinct modes of dopamine and GABA release in a dual transmitter neuron. J Neurosci Off J Soc Neurosci 33(5):1790–1796

    Article  CAS  Google Scholar 

  • Brunk I, Blex C, Rachakonda S, Holtje M, Winter S, Pahner I, Walther DJ, Ahnert-Hilger G (2006) The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem 281(44):33373–33385

    Article  CAS  PubMed  Google Scholar 

  • Brunk I, Blex C, Sanchis-Segura C, Sternberg J, Perreau-Lenz S, Bilbao A, Hortnagl H, Baron J, Juranek J, Laube G, Birnbaumer L, Spanagel R, Ahnert-Hilger G (2008) Deletion of Go2alpha abolishes cocaine-induced behavioral sensitization by disturbing the striatal dopamine system. FASEB J Off Publ Fed Am Soc Exp Biol 22(10):3736–3746

    CAS  Google Scholar 

  • Burger PM, Hell J, Mehl E, Krasel C, Lottspeich F, Jahn R (1991) GABA and glycine in synaptic vesicles: storage and transport characteristics. Neuron 7(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Gottlieb DI (1988) Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. J Neurosci Off J Soc Neurosci 8(6):2123–2130

    CAS  Google Scholar 

  • Chuhma N, Zhang H, Masson J, Zhuang X, Sulzer D, Hen R, Rayport S (2004) Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J Neurosci Off J Soc Neurosci 24(4):972–981

    Article  CAS  Google Scholar 

  • Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Cowan RL, Wilson CJ, Emson PC, Heizmann CW (1990) Parvalbumin-containing GABAergic interneurons in the rat neostriatum. J Comp Neurol 302(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Cserep C, Szonyi A, Veres JM, Nemeth B, Szabadits E, de Vente J, Hajos N, Freund TF, Nyiri G (2011) Nitric oxide signaling modulates synaptic transmission during early postnatal development. Cereb Cortex 21(9):2065–2074

    Article  PubMed Central  PubMed  Google Scholar 

  • Fiorentino H, Kuczewski N, Diabira D, Ferrand N, Pangalos MN, Porcher C, Gaiarsa JL (2009) GABA(B) receptor activation triggers BDNF release and promotes the maturation of GABAergic synapses. J Neurosci Off J Soc Neurosci 29(37):11650–11661

    Article  CAS  Google Scholar 

  • Fortune T, Lurie DI (2009) Chronic low-level lead exposure affects the monoaminergic system in the mouse superior olivary complex. J Comp Neurol 513(5):542–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99(22):14488–14493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90(2):82–100

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Berger B, Alvarez C, Vigny A, Henry JP (1985) Catecholaminergic innervation of the septal area in man: immunocytochemical study using TH and DBH antibodies. J Comp Neurol 241(1):12–33

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci Off J Soc Neurosci 7(12):3915–3934

    CAS  Google Scholar 

  • Gonchar Y, Pang L, Malitschek B, Bettler B, Burkhalter A (2001) Subcellular localization of GABA(B) receptor subunits in rat visual cortex. J Comp Neurol 431(2):182–197

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez T, Barroso-Chinea P, Acevedo A, Salido E, Rodriguez M (2001) Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur J Neurosci 13(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci Off J Soc Neurosci 22(13):5442–5451

    CAS  Google Scholar 

  • Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, Dumas S, Tzavara ET, Wade MR, Nomikos GG, Hanoun N, Saurini F, Kemel ML, Gasnier B, Giros B, El Mestikawy S (2008) The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci 11(3):292–300

    Article  CAS  PubMed  Google Scholar 

  • Groves PM, Linder JC, Young SJ (1994) 5-hydroxydopamine-labeled dopaminergic axons: three-dimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum. Neuroscience 58(3):593–604

    Article  CAS  PubMed  Google Scholar 

  • Gundersen V (2008) Co-localization of excitatory and inhibitory transmitters in the brain. Acta Neurol Scand Suppl 188:29–33

    Article  CAS  PubMed  Google Scholar 

  • Gundersen V, Chaudhry FA, Bjaalie JG, Fonnum F, Ottersen OP, Storm-Mathisen J (1998) Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci Off J Soc Neurosci 18(16):6059–6070

    CAS  Google Scholar 

  • Gundersen V, Fonnum F, Ottersen OP, Storm-Mathisen J (2001) Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: a quantitative immunogold study. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 21(1):41–51

    Article  CAS  Google Scholar 

  • Gundersen V, Holten AT, Storm-Mathisen J (2004) GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission. Mol Cell Neurosci 26(1):156–165

    Article  CAS  PubMed  Google Scholar 

  • Hattori T (1993) Conceptual history of the nigrostriatal dopamine system. Neurosci Res 16(4):239–262

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa H, Puopolo M, Raviola E (2009) Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 102(1):146–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirasawa H, Betensky RA, Raviola E (2012) Corelease of dopamine and GABA by a retinal dopaminergic neuron. J Neurosci Off J Soci Neurosci 32(38):13281–13291

    Article  CAS  Google Scholar 

  • Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56(2):720–723

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y (1992) Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. J Neurophysiol 67(6):1669–1682

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci Off J Soci Neurosci 10(10):3421–3438

    CAS  Google Scholar 

  • Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, Obata K, Okano H, Toida K, Puche AC, Shipley MT (2010) Molecular identity of periglomerular and short axon cells. J Neurosci Off J Soci Neurosci 30(3):1185–1196

    Article  CAS  Google Scholar 

  • Kosaka T, Kosaka K (2008) Tyrosine hydroxylase-positive GABAergic juxtaglomerular neurons are the main source of the interglomerular connections in the mouse main olfactory bulb. Neurosci Res 60(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci Off J Soci Neurosci 23(35):11026–11035

    CAS  Google Scholar 

  • Liberia T, Blasco-Ibanez JM, Nacher J, Varea E, Lanciego JL, Crespo C (2013) Two types of periglomerular cells in the olfactory bulb of the macaque monkey (Macaca fascicularis). Brain Struct Funct 218(4):873–887

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Plachez C, Shao Z, Puche A, Shipley MT (2013) Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neurosci Off J Soc Neurosci 33(7):2916–2926

    Article  CAS  Google Scholar 

  • Mahendrasingam S, Wallam CA, Hackney CM (2003) Two approaches to double post-embedding immunogold labeling of freeze-substituted tissue embedded in low temperature Lowicryl HM20 resin. Brain Res Brain Res Protoc 11(2):134–141

    Article  CAS  PubMed  Google Scholar 

  • Maher BJ, Westbrook GL (2008) Co-transmission of dopamine and GABA in periglomerular cells. J Neurophysiol 99(3):1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Mandemakers W, Snellinx A, O’Neill MJ, de Strooper B (2012) LRRK2 expression is enriched in the striosomal compartment of mouse striatum. Neurobiol Dis 48(3):582–593

    Article  CAS  PubMed  Google Scholar 

  • McDowell KA, Hutchinson AN, Wong-Goodrich SJ, Presby MM, Su D, Rodriguiz RM, Law KC, Williams CL, Wetsel WC, West AE (2010) Reduced cortical BDNF expression and aberrant memory in Carf knock-out mice. J Neurosci Off J Soc Neurosci 30(22):7453–7465

    Article  CAS  Google Scholar 

  • Morland C, Nordengen K, Gundersen V (2012) Valproate causes reduction of the excitatory amino acid aspartate in nerve terminals. Neurosci Lett 527(2):100–104

    Article  CAS  PubMed  Google Scholar 

  • Nadler JV, Vaca KW, White WF, Lynch GS, Cotman CW (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260(5551):538–540

    Article  CAS  PubMed  Google Scholar 

  • Olah S, Fule M, Komlosi G, Varga C, Baldi R, Barzo P, Tamas G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461(7268):1278–1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oprins A, Geuze HJ, Slot JW (1994) Cryosubstitution dehydration of aldehyde-fixed tissue: a favorable approach to quantitative immunocytochemistry. J Histochem Cytochem Off J Histochem Soc 42(4):497–503

    Article  CAS  Google Scholar 

  • Ormel L, Stensrud MJ, Chaudhry FA, Gundersen V (2012) A distinct set of synaptic-like microvesicles in atroglial cells contain VGLUT3. Glia 60(9):1289–1300

    Article  PubMed  Google Scholar 

  • Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58(2):303–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci Off J Soc Neurosci 14(1):88–106

    CAS  Google Scholar 

  • Sogn CJ, Puchades M, Gundersen V (2013) Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin - a postembedding immunogold study in the healthy rat brain. Eur J Neurosci 38(1):2030–2040

    Article  PubMed  Google Scholar 

  • Stensrud M, Chaudhry F, Leergaard T, Bjaalie JG, Gundersen V (2013) VGLUT3 in the rodent brain: vesicular co-localization with VGAT. J Comp Neurol. doi:10.1002/cne.23331

    PubMed  Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301(5900):517–520

    Article  CAS  PubMed  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci Off J Soc Neurosci 30(24):8229–8233

    Article  CAS  Google Scholar 

  • Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci Off J Soc Neurosci 30(20):7105–7110

    Article  CAS  Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M (1976) Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res 113(3):563–574

    Article  CAS  PubMed  Google Scholar 

  • Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Muller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50(4):589–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker MC, Ruiz A, Kullmann DM (2001) Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29(3):703–715

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Wang HL, Li X, Ng TH, Morales M (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci Off J Soc Neurosci 31(23):8476–8490

    Article  CAS  Google Scholar 

  • Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65(3):709–730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Medical Faculty, University of Oslo, Norway. The authors thank Mrs. Grazyna Babinska for preparation of electron microscopic samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidar Gundersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stensrud, M.J., Puchades, M. & Gundersen, V. GABA is localized in dopaminergic synaptic vesicles in the rodent striatum. Brain Struct Funct 219, 1901–1912 (2014). https://doi.org/10.1007/s00429-013-0609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0609-4

Keywords

Navigation