Skip to main content

Advertisement

Log in

High mobility group B1 and N1 (HMGB1 and HMGN1) are associated with tumor-infiltrating lymphocytes in HER2-positive breast cancers

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in HER2-positive breast cancers has been established, the drivers of TIL influx remain unclear. We tested whether potential triggers for this response could include high mobility group B1 and N1 (HMGB1 and HMGN1) proteins, which are immunogenic damage-associated molecular pattern molecules. We evaluated TILs and the immunohistochemical expression of HMGB1 and HMGN1 in 447 HER2-positive breast cancer tissues. Normal luminal cells exhibited nuclear expression of HMGB1 and HMBN1. The nuclear and cytoplasmic expression levels of HMG proteins showed a significant inverse correlation (rho = −0.150, p = 0.001 for HMGB1; rho = −0.247, p < 0.001 for HMGN1). Low levels of HMGB1 and HMGN1 nuclear expression were identified in 185 (41.4 %) and 208 (46.5 %) cases, respectively. High levels of cytoplasmic HMGB1 and HMGN1 expression were identified in 107 (23.9 %) and 49 (11.0 %) cases, respectively. High cytoplasmic expression of HMG proteins was significantly associated with a high histological grade, high levels of TILs, peritumoral lymphocytic infiltration, and tertiary lymphoid structures in HER2-positive breast cancer tissues. Tumors with low levels of cytoplasmic HMGB1 and HMGN1 showed significantly lower levels of TILs than those with high levels of each or both HMG proteins. However, the nuclear or cytoplasmic expression of either HMG protein was not found to be significantly associated with survival. High levels of cytoplasmic HMGB1 and HMGN1 protein expression correlated with high levels of TILs in HER2-positive breast cancers. The manipulation of HMGB1 and HMGN1 could represent an immunotherapeutic approach to promote TIL influx into a tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salgado R, Denkert C, Campbell C, Savas P, Nucifero P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, Piccart-Gebhart MJ, Michiels S, Bradbury I, Sotiriou C, Loi S (2015) Tumor-Infiltrating Ly mphocytes and Associations With Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA oncology 1:448–454

    Article  PubMed  Google Scholar 

  2. Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn JH, Gong G (2015) Prognostic Significance of Tumor-Infiltrating Lymphocytes and the Tertiary Lymphoid Structures in HER2-Positive Breast Cancer Treated With Adjuvant Trastuzumab. Am J Clin Pathol 144:278–288

    Article  PubMed  Google Scholar 

  3. Loi S (2013) Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology 2:e24720

    Article  PubMed Central  PubMed  Google Scholar 

  4. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol Off J Am Soc Clin Oncol 31:860–867

    Article  CAS  Google Scholar 

  5. Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, Rochaix P, Girard JP (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71:5678–5687

    Article  CAS  PubMed  Google Scholar 

  6. Goc J, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC: Characteristics of tertiary lymphoid structures in primary cancers. 2013, 2:e26836

  7. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156

    Article  CAS  PubMed  Google Scholar 

  8. Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard JP (2013) High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin beta-producing dendritic cells in human breast cancer. J Immunol 191:2001–2008

    Article  CAS  PubMed  Google Scholar 

  9. Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15:496–506

    Article  CAS  PubMed  Google Scholar 

  10. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875

    Article  CAS  PubMed  Google Scholar 

  11. Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, Howard OM, Bustin M, Oppenheim JJ (2014) The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res 74:5989–5998

    Article  CAS  PubMed  Google Scholar 

  12. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HM GB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110:1970–1981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bhatelia K, Singh K, Singh R (2014) TLRs: linking inflammation and breast cancer. Cell Signal 26:2350–2357

    Article  CAS  PubMed  Google Scholar 

  15. Flohr AM, Rogalla P, Meiboom M, Borrmann L, Krohn M, Thode-Halle B, Bullerdiek J (2001) Variation of HMGB1 expression in breast cancer. Anticancer Res 21:3881–3885

    CAS  PubMed  Google Scholar 

  16. Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S (2013) Circulating immunogenic cell death biomarkers HMG B1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol 34:81–90

    Article  CAS  PubMed  Google Scholar 

  17. Brezniceanu ML, Volp K, Bosser S, Solbach C, Lichter P, Joos S, Zornig M (2003) HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 17:1295–1297

    CAS  PubMed  Google Scholar 

  18. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breastcancer. J Clin Oncol Off J Am Soc Clin Oncol 17:1474–1481

    CAS  Google Scholar 

  19. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF: Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Archives of pathology & laboratory medicine 2013.

  20. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271

    Article  CAS  PubMed  Google Scholar 

  21. Lakhani SR EI, Schnitt SJ, Tan PH, van de Vijver MJ, editor: WHO Classification of Tumours of the Breast. 4th ed. Lyon: International Agency for Research on Cancer, 2012.

  22. Lee HJ, Park IA, Park SY, Seo AN, Lim B, Chai Y, Song IH, Kim NE, Kim JY, Yu JH, Ahn JH, Gong G (2014) Two histopathologically different diseases: hormone receptor-positive and hormone receptornegative tumors in HER2-positive breast cancer. Breast Cancer Res Treat 145:615–623

    Article  CAS  PubMed  Google Scholar 

  23. Ozturk N, Singh I, Mehta A, Braun T, Barreto G (2014) HMGA proteins as modulators of chromatin structure during transcriptional activation. Frontiers in cell and developmental biology 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  25. Lee H, Shin N, Song M, Kang UB, Yeom J, Lee C, Ahn YH, Yoo JS, Paik YK, Kim H (2010) Analysis of nuclear high mobility group box 1 (HMGB1)-binding proteins in colon cancer cells: clustering with proteins involved in secretion and extranuclear function. J Proteome Res 9:4661–4670

    Article  CAS  PubMed  Google Scholar 

  26. Yang D, Postnikov YV, Li Y, Tewary P, de la Rosa G, Wei F, Klinman D, Gioannini T, Weiss JP, Furusawa T, Bustin M, Oppenheim JJ (2012) High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J Exp Med 209:157–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–9.13

    Article  CAS  PubMed  Google Scholar 

  28. Shiratsuchi A, Watanabe I, Takeuchi O, Akira S, Nakanishi Y (2004) Inhibitory effect of Toll-like recept or 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol 172:2039–2047

    Article  CAS  PubMed  Google Scholar 

  29. Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, Prada N, Adjemian S, Catani JP, Freudenberg M, Galanos C, Andre F, Kroemer G, Zitvogel L (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 21:69–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360

    Article  CAS  PubMed  Google Scholar 

  31. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811

    CAS  PubMed  Google Scholar 

  32. van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, Griffioen AW (2013) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 32:363–374

    Article  PubMed  Google Scholar 

  33. Sasahira T, Kirita T, Bhawal UK, Ikeda M, Nagasawa A, Yamamoto K, Kuniyasu H (2007) The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch 450:287–295

    Article  CAS  PubMed  Google Scholar 

  34. Giavara S, Kosmidou E, Hande MP, Bianchi ME (2005) Morgan A, d’Adda di Fagagna F, Jackson SP:Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr Biol 15:68–72

    Article  CAS  PubMed  Google Scholar 

  35. Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A (2011) Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9:e1001086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (2015-0169) from the Asan Institute for Life Sciences, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyungyub Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

H.J. Lee and J.Y. Kim contributed equally to this work.

Electronic supplementary material

ESM 1

(XLSX 10.6 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Kim, J.Y., Song, I.H. et al. High mobility group B1 and N1 (HMGB1 and HMGN1) are associated with tumor-infiltrating lymphocytes in HER2-positive breast cancers. Virchows Arch 467, 701–709 (2015). https://doi.org/10.1007/s00428-015-1861-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1861-1

Keywords

Navigation