Skip to main content
Log in

A genomewide survey of developmentally relevant genes in Ciona intestinalis

II. Genes for homeobox transcription factors

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Homeobox-containing genes play crucial roles in various developmental processes, including body-plan specification, pattern formation and cell-type specification. The present study searched the draft genome sequence and cDNA/EST database of the basal chordate Ciona intestinalis to identify 83 homeobox-containing genes in this animal. This number of homeobox genes in the Ciona genome is smaller than that in the Caenorhabditis elegans, Drosophila melanogaster, human and mouse genomes. Of the 83 genes, 76 have possible human orthologues and 7 may be unique to Ciona. The ascidian homeobox genes were classified into 11 classes, including Hox class, NK class, Paired class, POU class, LIM class, TALE class, SIX class, Prox class, Cut class, ZFH class and HNF1 class, according to the classification scheme devised for known homeobox genes. As to the Hox cluster, the Ciona genome contains single copies of each of the paralogous groups, suggesting that there is a single Hox cluster, if any, but genes orthologous to Hox7, 8, 9 and 11 were not found in the genome. In addition, loss of genes had occurred independently in the Ciona lineage and was noticed in Gbx of the EHGbox subclass, Sax, NK3, Vax and vent of the NK class, Cart, Og9, Anf and Mix of the Paired class, POU-I, III, V and VI of the POU class, Lhx6/7 of the LIM class, TGIF of the TALE class, Cux and SATB of the Cut class, and ZFH1 of the ZFH class, which might have reduced the number of Ciona homeobox genes. Interestingly, one of the newly identified Ciona intestinalis genes and its vertebrate counterparts constitute a novel subclass of HNF1 class homeobox genes. Furthermore, evidence for the gene structures and expression of 54 of the 83 homeobox genes was provided by analysis of ESTs, suggesting that cDNAs for these 54 genes are available. The present data thus reveal the repertoire of homeodomain-containing transcription factors in the Ciona genome, which will be useful for future research on the development and evolution of chordates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Aniello F, Locascio A, Villani MG, Di Gregorio A, Fucci L, Branno M (1999) Identification and developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona intestinalis. Mech Dev 88:123–126

    Article  PubMed  CAS  Google Scholar 

  • Banerjee-Basu S, Baxevanis AD (2001) Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res 29:3258–3269

    Article  PubMed  CAS  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719-729

    PubMed  CAS  Google Scholar 

  • Boucher CA, Winchester CL, Hamilton GM, Winter AD, Johnson KJ, Bailey ME (2000) Structure, mapping and expression of the human gene encoding the homeodomain protein, SIX2. Gene 247:145–151

    Article  PubMed  CAS  Google Scholar 

  • Brooke NM, Garcia-Fernàndez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922

    Article  PubMed  CAS  Google Scholar 

  • Burglin TR (1994) A comprehensive classification of homeobox genes. In: Duboule D (ed) Guidebook to the homeobox genes. Oxford University Press, New York, pp 27–64

  • Burglin TR (1995) The evolution of homeobox genes. In: Arai R, Kato M, Doi Y (eds) Biodiversity and Evolution. The National Science Museum Foundation, Tokyo, pp 291–336

  • Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180

    Article  PubMed  CAS  Google Scholar 

  • Burglin TR, Cassata G (2002) Loss and gain of domains during evolution of cut superclass homeobox genes. Int J Dev Biol 46:115–123

    PubMed  CAS  Google Scholar 

  • Burglin TR, Ruvkun G (2001) Regulation of ectodermal and excretory function by the C. elegans POU homeobox gene ceh-6. Development 128:779–790

    PubMed  CAS  Google Scholar 

  • Caracciolo A, Di Gregorio A, Aniello F, Di Lauro R, Branno M (2000) Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis. Mech Dev 99:173–176

    Article  PubMed  CAS  Google Scholar 

  • Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47

    Article  PubMed  CAS  Google Scholar 

  • Chi YI, Frantz JD, Oh BC, Hansen L, Dhe-Paganon S, Shoelson SE (2002) Diabetes mutations delineate an atypical POU domain in HNF1α. Mol Cell 10:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Christiaen L, Burighel P, Smith WC, Vernier P, Bourrat F, Joly JS (2002) Pitx genes in Tunicates provide new molecular insight into the evolutionary origin of pituitary. Gene 287:107–113

    Article  PubMed  CAS  Google Scholar 

  • Corrado M, Aniello F, Fucci L, Branno M (2001) Ci-IPF1, the pancreatic homeodomain transcription factor, is expressed in neural cells of Ciona intestinalis larva. Mech Dev 102:271–274

    Article  PubMed  CAS  Google Scholar 

  • Coulier F, Popovici C, Villet R, Birnbaum D (2000) MetaHox gene clusters. J Exp Zool 288:345–351

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Di Gregorio A, Spagnuolo A, Ristoratore F, Pischetola M, Aniello F, Branno M, Cariello L, Di Lauro R (1995) Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster. Gene 156:253–257

    Article  Google Scholar 

  • Dozier C, Kagoshima H, Niklaus G, Cassata G, Burglin TR (2001) The Caenorhabditis elegans Six/sine oculis class homeobox gene ceh-32 is required for head morphogenesis. Dev Biol 236:289–303

    Article  PubMed  CAS  Google Scholar 

  • FANTOM Consortium and RIKEN Genome Exploration Research Group Phase I & II Team (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Article  Google Scholar 

  • Ferrier DEK, Holland PWH (2002) Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol 24:412

    Article  PubMed  CAS  Google Scholar 

  • Ferrier DEK, Minguillon C, Holland PWH, Garcia-Fernàndez J (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev 2:284–293

    Article  PubMed  CAS  Google Scholar 

  • Ferrier DEK, Minguillon C, Cebrian C, Garcia-Fernàndez J (2001) Amphioxus Evx genes: implications for the evolution of the midbrain-hindbrain boundary and the chordate tailbud. Dev Biol 237:270-281

    Article  PubMed  CAS  Google Scholar 

  • Galliot B, de Vargas C, Miller D (1999) Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol 209:186–197

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566

    Article  PubMed  Google Scholar 

  • Gionti M, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R (1998) Cihox5, a new Ciona intestinalis Hox-related gene, is involved in regionalization of the spinal cord. Dev Genes Evol 207:515–523

    Article  PubMed  CAS  Google Scholar 

  • Giuliano P, Marino R, Pinto MR, De Santis R (1998) Identification and developmental expression of Ci-isl, a homologue of vertebrate islet genes, in the ascidian Ciona intestinalis. Mech Dev 78:199–202

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Skarmeta JL, Modolell J (2002) Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 12:403–408

    Article  PubMed  CAS  Google Scholar 

  • Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P (1998) Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125:2599–2610

    PubMed  CAS  Google Scholar 

  • Harris TW, Lee R, Schwarz E, Bradnam K, Lawson D, Chen W, Blasier D, Kenny E, Cunningham F, Kishore R, Chan J, et al (2003) WormBase: a cross-species database for comparative genomics. Nucleic Acids Res 31:133–137

    Article  PubMed  CAS  Google Scholar 

  • Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16:75–83

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH (1991) Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish and ascidian. Gene 98:253–257

    Article  PubMed  CAS  Google Scholar 

  • Hudson C, Lemaire P (2001) Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech Dev 100:189–203

    Article  PubMed  CAS  Google Scholar 

  • Imai KS, Satoh N, Satou Y (2002) Region specific gene expressions in the central nervous system of the ascidian embryo. Gene Exp Patt 2:319–321

    Article  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Lannoy VJ, Burglin TR, Rousseau GG, Lemaigre FP (1998) Isoforms of hepatocyte nuclear factor-6 differ in DNA-binding properties, contain a bifunctional homeodomain, and define the new ONECUT class of homeodomain proteins. J Biol Chem 273:13552–13562

    Article  PubMed  CAS  Google Scholar 

  • Locascio A, Aniello F, Amoroso A, Manzanares M, Krumlauf R, Branno M (1999) Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development 126:4737–4748

    PubMed  CAS  Google Scholar 

  • Martinez P, Rast JP, Arenas-Mena C, Davidson EH (1999) Organization of an echinoderm Hox gene cluster. Proc Natl Acad Sci USA 96:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara M, Wada H, Peters H, Satoh N (1999) Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development 126:2539–2550

    PubMed  CAS  Google Scholar 

  • Pollard SL, Holland PWH (2000) Evidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol 10:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Popodi E, Kissinger JC, Andrews ME, Raff RA (1996) Sea urchin Hox genes: insights into the ancestral Hox cluster. Mol Biol Evol 13:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    Article  PubMed  CAS  Google Scholar 

  • Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. Dev Genes Evol DOI 10.1007/s00427-003-0319-7

  • Scott MP (1992) Vertebrate homeobox gene nomenclature. Cell 71:551–553

    Article  PubMed  CAS  Google Scholar 

  • Seo HC, Curtiss J, Mlodzik M, Fjose A (1999) Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev 83:127–139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research from MEXT and JSPS, Japan, to Y.S. (14704070) and N.S. (12202001), and by a CREST project of Japan Science and Technology Corporation (N.S., E.S., and S.W.). K.K. was a Postdoctoral Fellow of JSPS with a research grant (14061430). We thank Kazuko Hirayama, Chikako Imaizumi, Asako Fujimoto, and Hisayoshi Ishikawa for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nori Satoh.

Additional information

Edited by D. Tautz

The first two authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, S., Tokuoka, M., Shoguchi, E. et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis . Dev Genes Evol 213, 222–234 (2003). https://doi.org/10.1007/s00427-003-0321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-003-0321-0

Keywords

Navigation