Skip to main content
Log in

Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Amino acid sequence and crystal structure analyses of Tma12, an insecticidal protein isolated from the fern Tectaria macrodonta, identify it as a carbohydrate-binding protein belonging to the AA10 family of lytic polysaccharide monooxygenases, and provide the first evidence of AA10 proteins in plants.

Tma12, isolated from the fern Tectaria macrodonta, is a next-generation insecticidal protein. Transgenic cotton expressing Tma12 exhibits resistance against whitefly and viral diseases. Beside its insecticidal property, the structure and function of Tma12 are unknown. This limits understanding of the insecticidal mechanism of the protein and targeted improvement in its efficacy. Here we report the amino acid sequence analysis and the crystal structure of Tma12, suggesting that it is possibly a lytic polysaccharide monooxygenase (LPMO) of the AA10 family. Amino acid sequence of Tma12 shows 45% identity with a cellulolytic LPMO of Streptomyces coelicolor. The crystal structure of Tma12, obtained at 2.2 Å resolution, possesses all the major structural characteristics of AA10 LPMOs. A H2O2-based enzymatic assay also supports this finding. It is the first report of the occurrence of LPMO-like protein in a plant. The two facts that Tma12 possesses insecticidal activity and shows structural similarity with LPMOs collectively advocate exploration of microbial LPMOs for insecticidal potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2011) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892

    Article  CAS  PubMed  Google Scholar 

  • Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monooxygenases. Ann Rev Biochem 84:923–946

    Article  CAS  PubMed  Google Scholar 

  • Bissaro B, Røhr AK, Müller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijsink VGH (2017) Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol 13:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Røhr AK, Payne CM, Sørlie M, Sandgren M, Eijsink VGH (2015) Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem 290:22955–22969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, Aizel K, Oliéric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK, Bergoin M, Metcalf P, Coulibaly F (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci USA 112:3973–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crouch LI, Labourel A, Walton PH, Davies GJ, Gilbert HJ (2016) The contribution of non-catalytic carbohydrate binding modules to the activity of lytic polysaccharide monooxygenases. J Biol Chem 291:7439–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Cryst D66:486–501

    Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VGH (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Mackenzie AK, Sørlie M, Røhr AK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VGH (2014) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8446–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch LI, Røhr AK, Gardner JG, Eijsink VGH, Vaaje-Kolstad G (2016) Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicas. J Biol Chem 291:7300–7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Bissaro B, Gullesen J, Dalhus B, Vaaje-Kolstad G, Eijsink VGH (2018) Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. J Biol Chem 293:1397–1412

    Article  CAS  PubMed  Google Scholar 

  • Frandsen KEH, Leggio LL (2016) Lytic polysaccharide monooxygenases: a crystallographer’s view on a new class of biomass-degrading enzymes. IUCrJ 3:448–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frandsen KEH, Simmons TJ, Dupree P, Poulsen J-CN, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Leggio LL, Walton PH (2016) The molecular basis for polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat Chem Biol 12:298–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ (2013) Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159:833–847

    Article  CAS  PubMed  Google Scholar 

  • Hedegård ED, Ryde U (2018) Molecular mechanism of lytic polysaccharide monooxygenases. Chem Sci 9:3866–3880

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemsworth GR, Davies GJ, Walton PH (2013a) Recent insights into copper-containing lytic polysaccharide monooxygenases. Curr Opin Struct Biol 23:660–668

    Article  CAS  PubMed  Google Scholar 

  • Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH (2013b) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135:6069–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemsworth GR, Johnston EM, Davies GJ, Walton PH (2015) Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol 33:747–761

    Article  CAS  PubMed  Google Scholar 

  • Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44(W1):W351–W355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen KS (2016) Discovery and industrial applications of lytic polysaccharide monooxygenases. Biochem Soc Trans 44:143–149

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 111:149–154

    Article  CAS  PubMed  Google Scholar 

  • Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R (2012) Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels 5:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI (2014) Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8797–8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Ailm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A-C, Gomord V, Faye L (1998) N-Glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Beeson WT IV, Phillips CM, Marletta MA, Cate JHD (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F-W, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J, Delaux P-M, Eily A, Koppers N, Kuo L-Y, Li Z et al (2018) Fern genomes elucidate land evolution and cyanobacterial symbiosis. Nat Plants 4:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matasci N, Hung L-H, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S et al (2014) Data access for the 1,000 plants (1KP) project. GigaScience 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40:658–674

    Article  CAS  Google Scholar 

  • Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D67:355–367

    Google Scholar 

  • Ogunmolu FE, Kaur I, Gupta M, Bashir Z, Pasari N, Yazdani SS (2015) Proteomics insights into the biomass hydrolysis potentials of a hyper cellulolytic fungus Penicillium funiculosum. J Proteome Res 14:4342–4358

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM (eds) Methods in enzymology (macromolecular crystallography part A), vol 276. Academic Press, New York, pp 307–326

    Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen J-CN, Johansen KS, Krogh KBRM, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabbadin F, Hemsworth GR, Ciano L, Henrissat B, Dupree P, Tryfona T, Marques RDS, Sweeney ST, Besser K, Elias L et al (2018) An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 9:756. https://doi.org/10.1038/s1467-018-03142-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Schülein M (1997) Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57:71–81

    Article  PubMed  Google Scholar 

  • Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H, Thakur N, Rai P, Pandey P, Hans AL, Srivastava S (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Smith PE, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Span EA, Marletta MA (2015) The framework of polysaccharide monooxygenase structure and chemistry. Curr Opin Struct Biol 35:93–99

    Article  CAS  PubMed  Google Scholar 

  • Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The PyMOL molecular graphics system (2012) version 1.5.0.3, Schrodinger, LLC

  • Vaaje-Kolstad G, Houston DR, Riemen AH, Eijsink VGH, van Aalten DMF (2005) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Forsberg Z, Loose JSM, Bissaro B, Eijsink VGH (2017) Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol 44:67–76

    Article  CAS  PubMed  Google Scholar 

  • Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA (2014) Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 136:562–565

    Article  CAS  PubMed  Google Scholar 

  • Walton PH, Davies GJ (2016) On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr Opin Chem Biol 31:195–207

    Article  CAS  PubMed  Google Scholar 

  • Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:e27807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al (2011) Overview of the CCP4 suite and current developments. Acta Cryst D67:235–242

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bichitra K. Biswal and Mr. Ravi Kant Pal for their help in crystallographic data collection at the X-ray diffractometer facility, National Institute of Immunology, New Delhi, India. The authors are grateful to Prof. P. Balaram and Prof. N. V. Joshi, Indian Institute of Science, Bangalore, India, for their help in the UniProt database analysis. Dr. S. S Yazdani, ICGEB, New Delhi is kindly acknowledged for providing C. fimi and P. funiculosum LPMOs. SKY is thankful to ICMR, New Delhi; Archana to the University Grant Commission, New Delhi; respectively, for fellowships. Authors are also thankful for Council of Scientific and Industrial Research (CSIR), New Delhi for overall support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradhyumna Kumar Singh or Prema G. Vasudev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Archana, Singh, R. et al. Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monooxygenase. Planta 249, 1987–1996 (2019). https://doi.org/10.1007/s00425-019-03135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03135-0

Keywords

Navigation