Skip to main content

Advertisement

Log in

Acute cardiopulmonary responses to strength training, high-intensity interval training and moderate-intensity continuous training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Long-term effects of exercise training are well studied. Acute hemodynamic responses to various training modalities, in particularly strength training (ST), have only been described in a few studies. This study examines the acute responses to ST, high-intensity interval training (HIIT) and moderate-intensity continuous training (MCT).

Methods

Twelve young male subjects (age 23.4 ± 2.6 years; BMI 23.7 ± 1.5 kg/m2) performed an incremental exertion test and were randomized into HIIT (4 × 4-min intervals), MCT (continuous cycling) and ST (five body-weight exercises) which were matched for training duration. The cardiopulmonary (impedance cardiography, ergo-spirometry) and metabolic response were monitored.

Results

Similar peak blood lactate responses were observed after HIIT and ST (8.5 ± 2.6 and 8.1 ± 1.2 mmol/l, respectively; p = 0.83). The training impact time was 90.7 ± 8.5% for HIIT and 68.2 ± 8.5% for MCT (p < 0.0001). The mean cardiac output was significantly higher for HIIT compared to that of MCT and ST (23.2 ± 4.1 vs. 20.9 ± 2.9 vs. 12.9 ± 2.9 l/min, respectively; p < 0.0001). VO2max was twofold higher during HIIT compared to that observed during ST (2529 ± 310 vs. 1290 ± 156 ml; p = 0.0004). Among the components of ST, squats compared with push-ups resulted in different heart rate (111 ± 13.5 vs. 125 ± 15.7 bpm, respectively; p < 0.05) and stroke volume (125 ± 23.3 vs. 104 ± 19.8 ml, respectively; p < 0.05).

Conclusions

Despite an equal training duration and a similar acute metabolic response, large differences with regard to the training impact time and the cardiopulmonary response give evident. HIIT and MCT, but less ST, induced a sufficient cardiopulmonary response, which is important for the preventive effects of training; however, large differences in intensity were apparent for ST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Astorino TA, Edmunds RM, Clark A, King L, Gallant RA, Namm S, Fischer A, Wood KM (2017). High-intensity interval training increases cardiac output and \(\dot{V}{\text{O}}_{2\hbox{max} }\). Med Sci Sports Exerc 49:265–273

  • Bækkerud FH, Solberg F, Leinan IM, Wisløff U, Karlsen T, Rognmo Ø (2016) Comparison of three popular exercise modalities on \(\dot{V}{\text{O}}_{2\hbox{max} }\) in overweight and obese. Med Sci Sports Exerc 48:491–498

  • Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, Hunt TK (2006) Lactate stimulates endothelial cell migration. Wound Repair 14:321–324

    Article  Google Scholar 

  • Cattadori G, Schmid J-P, Brugger N, Gondoni E, Palermo P, Agostoni P (2011) Hemodynamic effects of exercise training in heart failure. J Card Fail 17:916–922

    Article  PubMed  Google Scholar 

  • Chilton WL, Marques FZ, West J, Kannourakis G, Berzins SP, O’Brien BJ, Charchar FJ (2014) Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One 9:e92088

    Article  PubMed  PubMed Central  Google Scholar 

  • Chlif M, Chaouachi A, Ahmaidi S (2017) Effect of aerobic exercise training on ventilatory efficiency and respiratory drive in obese subjects. Respir Care 62:936–946

    Article  PubMed  Google Scholar 

  • Cipryan L, Tschakert G, Hofmann P (2017) Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J Sports Sci Med 16:219–229

    PubMed  PubMed Central  Google Scholar 

  • Conraads VM, Pattyn N, De Maeyer C, Beckers PJ, Coeckelberghs E, Cornelissen VA, Denollet J, Frederix G, Goetschalckx K, Hoymans VY, Possemiers N, Schepers D, Shivalkar B, Voigt J-U, Van Craenenbroeck EM, Vanhees L (2015) Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol 179:203–210

    Article  PubMed  Google Scholar 

  • Constant JS, Feng JJ, Zabel DD, Yuan H, Suh DY, Scheuenstuhl H, Hunt TK, Hussain MZ (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair 8:353–360

    Article  CAS  Google Scholar 

  • Cornelis J, Beckers P, Taeymans J, Vrints C, Vissers D (2016) Comparing exercise training modalities in heart failure: a systematic review and meta-analysis. Int J Cardiol 221:867–876

    Article  PubMed  Google Scholar 

  • Currie KD, Bailey KJ, Jung ME, McKelvie RS, MacDonald MJ (2015) Effects of resistance training combined with moderate-intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. J Sci Med Sport 18:637–642

    Article  PubMed  Google Scholar 

  • Daussin FN, Ponsot E, Dufour SP, Lonsdorfer-Wolf E, Doutreleau S, Geny B, Piquard F, Richard R (2007) Improvement of VO2max, by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101:377–383

    Article  PubMed  Google Scholar 

  • Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264–R272

    Article  CAS  PubMed  Google Scholar 

  • Dunham C, Harms CA (2012) Effects of high-intensity interval training on pulmonary function. Eur J Appl Physiol 112:3061–3068

    Article  PubMed  Google Scholar 

  • Egginton S (2009) Invited review: activity-induced angiogenesis. Pflugers Arch 457:963–977

    Article  CAS  PubMed  Google Scholar 

  • Emberts T, Porcari J, Dobers-tein S, Steffen J, Foster C (2013) Exercise intensity and energy expenditure of a Tabata workout. J Sports Sci Med 12:612–613

    PubMed  PubMed Central  Google Scholar 

  • Fagard RH (1997) Impact of different sports and training on cardiac structure and function. Cardiol Clin 15:397–412

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728

    Article  CAS  PubMed  Google Scholar 

  • Fisher G, Brown AW, Brown MMB, Alcorn A, Noles C, Winwood L, Resuehr H, George B, Jeansonne MM, Allison DB (2015) High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One 10:e0138853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyssin C, Verkindt C, Prieur F, Benaich P, Maunier S, Blanc P (2012) Cardiac rehabilitation in chronic heart failure: effect of an 8-week, high-intensity interval training versus continuous training. Arch Phys Med Rehabil 93:1359–1364

    Article  PubMed  Google Scholar 

  • Fu T, Wang C-H, Lin P-S, Hsu C-C, Cherng W-J, Huang S-C, Liu M-H, Chiang C-L, Wang J-S (2013) Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol 167:41–50

    Article  PubMed  Google Scholar 

  • Gayda M, Normandin E, Meyer P, Juneau M, Haykowsky M, Nigam A (2012) Central hemodynamic responses during acute high-intensity interval exercise and moderate continuous exercise in patients with heart failure. Appl Physiol Nutr Metab 37:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Green N, Wertz T, Laporta Z, Mora A, Serbas J, Astorino TA (2017) Comparison of acute physiological and psychological responses between moderate intensity continuous exercise and three regimes of high intensity training. J Strength Cond Res. https://doi.org/10.1519/jsc.0000000000002154

    Article  PubMed  Google Scholar 

  • Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–H685

    CAS  PubMed  Google Scholar 

  • Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA, Clark AM (2013) Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol 111:1466–1469

    Article  PubMed  Google Scholar 

  • Helgerud J, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007). Aerobic high-intensity intervals improve \(\dot{V}{\text{O}}_{2\hbox{max} }\) more than moderate training: Med Sci Sports Exerc 39:665–671

  • Hoier B, Hellsten Y (2014) Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirc N Y N 1994(21):301–314

    Article  CAS  Google Scholar 

  • Holloway TM, Snijders T, van Kranenburg J, Van Loon LJC, Verdijk LB (2018) Temporal response of angiogenesis and hypertrophy to resistance training in young men. Med Sci Sports Exerc 50:36–45

    Article  PubMed  Google Scholar 

  • Iellamo F, Manzi V, Caminiti G, Vitale C, Castagna C, Massaro M, Franchini A, Rosano G, Volterrani M (2013) Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol 167:2561–2565

    Article  PubMed  Google Scholar 

  • Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA (2013) Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. JACC Heart Fail 1:514–522

    Article  PubMed  Google Scholar 

  • Jewiss D, Ostman C, Smart NA (2016) The effect of resistance training on clinical outcomes in heart failure: a systematic review and meta-analysis. Int J Cardiol 221:674–681

    Article  CAS  PubMed  Google Scholar 

  • Karlsen T, Aamot I-L, Haykowsky M, Rognmo Ø (2017) High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis 60:67–77

    Article  PubMed  Google Scholar 

  • Karsten M, Ribeiro GS, Esquivel MS, Matte DL (2018) The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: a systematic review and meta-analysis. Phys Ther 34:92–104

    Google Scholar 

  • Lamotte M, Fleury F, Pirard M, Jamon A, van de Borne P (2010) Acute cardiovascular response to resistance training during cardiac rehabilitation: effect of repetition speed and rest periods. Eur J Cardiovasc Prev 17:329–336

    Article  Google Scholar 

  • Laughlin MH (1999) Cardiovascular response to exercise. Adv Physiol Educ 277:S244

    Article  CAS  Google Scholar 

  • Lepretre P, Koralsztein J, Billat VL (2004) Effect of exercise intensity on relationship between \(\dot{V}{\text{O}}_{2\hbox{max} }\) and cardiac output. Med Sci Sports Exerc 36:1357–1363

  • Liao W-H, Chen J-W, Chen X, Lin L, Yan H-Y, Zhou Y-Q, Chen R (2015) Impact of resistance training in subjects with COPD: a systematic review and meta-analysis. Respir Care 60:1130–1145

    Article  PubMed  Google Scholar 

  • Liou K, Ho S, Fildes J, Ooi S-Y (2016) High intensity interval versus moderate intensity continuous training in patients with coronary artery disease: a meta-analysis of physiological and clinical parameters. Heart Lung Circ 25:166–174

    Article  PubMed  Google Scholar 

  • Lundby C, Montero D, Joyner M (2017) Biology of VO2max: looking under the physiology lamp. Acta Physiol Oxf Engl 220:218–228

    Article  CAS  Google Scholar 

  • MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity. J Physiol 595:2915–2930

    Article  CAS  PubMed  Google Scholar 

  • MacInnis MJ, Zacharewicz E, Martin BJ, Haikalis ME, Skelly LE, Tarnopolsky MA, Murphy RM, Gibala MJ (2017) Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J Physiol 595:2955–2968

    Article  CAS  PubMed  Google Scholar 

  • Milanović Z, Sporiš G, Weston M (2015) Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med Auckl NZ 45:1469–1481

    Article  Google Scholar 

  • Milovanova TN, Bhopale VM, Sorokina EM, Moore JS, Hunt TK, Hauer-Jensen M, Velazquez OC, Thom SR (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero D, Cathomen A, Jacobs RA, Flück D, de Leur J, Keiser S, Bonne T, Kirk N, Lundby A-K, Lundby C (2015) Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. J Physiol 593:4677–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 460:153–162

    Article  CAS  PubMed  Google Scholar 

  • Ostman C, Jewiss D, Smart NA (2017) The effect of exercise training intensity on quality of life in heart failure patients: a systematic review and meta-analysis. Cardiology 136:79–89

    Article  PubMed  Google Scholar 

  • Parmenter BJ, Dieberg G, Smart NA (2015) Exercise training for management of peripheral arterial disease: a systematic review and meta-analysis. Sports Med 45:231–244

    Article  PubMed  Google Scholar 

  • Ramírez-Vélez R, Tordecilla-Sanders A, Téllez-T LA, Camelo-Prieto D, Hernández-Quiñonez PA, Correa-Bautista JE, Garcia-Hermoso A, Ramirez-Campillo R, Izquierdo M (2017) Similar cardiometabolic effects of high- and moderate-intensity training among apparently healthy inactive adults: a randomized clinical trial. J Transl Med 15:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenek R, Salassi JW, Pinto NM, Fleming JD (2016) Acute cardiopulmonary and metabolic responses to high-intensity interval training protocols using 60 s of work and 60 s recovery. J Strength Cond Res 30:3014–3023

    Article  PubMed  Google Scholar 

  • Scribbans TD, Vecsey S, Hankinson PB, Foster WS, Gurd BJ (2016) The effect of training intensity on VO2max in young healthy adults: a meta-regression and meta-analysis. Int J Exerc Sci 9:230–247

    PubMed  PubMed Central  Google Scholar 

  • Shalaby MN, Saad M, Akar S, Reda MAA, Shalgham A (2012) The role of aerobic and anaerobic training programs on CD(34 +) stem cells and chosen physiological variables. J Hum Kinet 35:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Siebenmann C, Rasmussen P, Sørensen H, Zaar M, Hvidtfeldt M, Pichon A, Secher NH, Lundby C (2015) Cardiac output during exercise: a comparison of four methods. Scand J Med Sci Sports 25:e20–e27

    Article  CAS  PubMed  Google Scholar 

  • Smart NA, Steele M (2012) A comparison of 16 weeks of continuous vs intermittent exercise training in chronic heart failure patients. Congest Heart Fail 18:205–211

    Article  PubMed  Google Scholar 

  • Smart NA, Dieberg G, Giallauria F (2013) Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol 166:352–358

    Article  PubMed  Google Scholar 

  • Spence AL, Naylor LH, Carter HH, Buck CL, Dembo L, Murray CP, Watson P, Oxborough D, George KP, Green DJ (2011) A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J Physiol 589:5443–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser B, Siebert U, Schobersberger W (2013) Effects of resistance training on respiratory function in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Sleep Breath 17:217–226

    Article  PubMed  Google Scholar 

  • Streckmann F, Zopf EM, Lehmann HC, May K, Rizza J, Zimmer P, Gollhofer A, Bloch W, Baumann FT (2014) Exercise intervention studies in patients with peripheral neuropathy: a systematic review. Sports Med 44:1289–1304

    Article  PubMed  Google Scholar 

  • Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28:1327–1330

    Article  CAS  Google Scholar 

  • Taylor KA, Wiles JD, Coleman DD, Sharma R, Oʼdriscoll JM (2017) Continuous cardiac autonomic and hemodynamic responses to isometric exercise. Med Sci Sports Exerc 49:1511–1519

    Article  PubMed  Google Scholar 

  • Tschakert G, Kroepfl J, Mueller A, Moser O, Groeschl W, Hofmann P (2015) How to regulate the acute physiological response to “aerobic” high-intensity interval exercise. J Sports Sci Med 14:29–36

    PubMed  PubMed Central  Google Scholar 

  • Verdijk LB, Snijders T, Holloway TM, van Kranenburg J, van Loon LJC (2016) Resistance training increases skeletal muscle capillarization in healthy older men. Med Sci Sports Exerc 48:2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Vincent KR, Braith RW, Feldman RA, Kallas HE, Lowenthal DT (2002) Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women. Arch Intern Med 162:673–678

    Article  PubMed  Google Scholar 

  • Weiner RB, Weyman AE, Kim JH, Wang TJ, Picard MH, Baggish AL (2012) The impact of isometric handgrip testing on left ventricular twist mechanics. J Physiol 590:5141–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3:346–356

    Article  CAS  PubMed  Google Scholar 

  • Werner CM, Hecksteden A, Morsch A, Zundler J, Wegmann M, Kratzsch J, Thiery J, Hohl M, Bittenbring JT, Neumann F, Böhm M, Meyer T, Laufs U (2018) Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 10:10. https://doi.org/10.1093/eurheartj/ehy585

    Article  Google Scholar 

  • Weston KS, Wisløff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48:1227–1234

    Article  Google Scholar 

  • Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjærpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094

    Article  PubMed  Google Scholar 

Download references

Funding

None declared.

Author information

Authors and Affiliations

Authors

Contributions

RF and SF conceived and designed research. RF and RH conducted experiments and analyzed the data. RF wrote the manuscript. SF designed and drafted and critically revised the manuscript. SF, RH, UL, KF and MB read, approved and critical revised the manuscript.

Corresponding author

Correspondence to Roberto Falz.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Additional information

Communicated by Keith Phillip George.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falz, R., Fikenzer, S., Holzer, R. et al. Acute cardiopulmonary responses to strength training, high-intensity interval training and moderate-intensity continuous training. Eur J Appl Physiol 119, 1513–1523 (2019). https://doi.org/10.1007/s00421-019-04138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04138-1

Keywords

Navigation