Skip to main content
Log in

Live high–train low guided by daily heart rate variability in elite Nordic-skiers

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To analyze if live high–train low (LHTL) effectiveness is improved when daily training is guided by heart rate variability (HRV).

Methods

Twenty-four elite Nordic skiers took part in a 15-day LHTL study and were randomized into a HRV-guided training hypoxic group (H-HRV, n = 9, sleeping in normobaric hypoxia, FiO2 = 15.0%) and two predefined training groups sleeping either in hypoxia (H, n = 9, FiO2 = 15.0%) or normoxia (N, n = 6). HRV and training loads (TL) were recorded daily. Prior (Pre), one (Post-1), and 21 days (Post-21) following LHTL, athletes performed a 10-km roller-ski test, and a treadmill test for determination of \(\dot {V}{{\text{O}}_{{\text{2max}}}}\) was performed at Pre and Post-1.

Results

Some HRV parameters measured in supine position were different between H-HRV and H: low and high (HF) frequency power in absolute (ms2) (16.0 ± 35.1 vs. 137.0 ± 54.9%, p = 0.05) and normalized units (− 3.8 ± 10.1 vs. 53.0 ± 19.5%, p = 0.02), HF(nu) (6.3 ± 6.8 vs. − 13.7 ± 8.0%, p = 0.03) as well as heart rate (3.7 ± 6.3 vs. 12.3 ± 4.1%, p = 0.008). At Post-1, \(\dot {V}{{\text{O}}_{{\text{2max}}}}\) was improved in H-HRV and H (3.8 ± 3.1%; p = 0.02 vs. 3.0 ± 4.4%; p = 0.08) but not in N (0.9 ± 5.1%; p = 0.7). Only H-HRV improved the roller-ski performance at Post-21 (− 2.7 ± 3.6%, p = 0.05).

Conclusion

The daily individualization of TL reduced the decrease in autonomic nervous system parasympathetic activity commonly associated with LHTL. The improved performance and oxygen consumption in the two LHTL groups confirm the effectiveness of LHTL even in elite endurance athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

FFT:

Fast Fourier transform

FiO2 :

Inspired fraction of oxygen

H:

Hypoxic

HF:

High-frequency power

HFnu:

High-frequency power in normalized units

Hbmass :

Hemoglobin mass

HR:

Heart rate

HRV:

Heart rate variability

LF:

Low-frequency power

LFnu:

Low-frequency power in normalized units

LHTL:

Live high–train low

N:

Normoxic

PiO2 :

Partial pressure of inspired oxygen

QSFMS:

Questionnaire of the French Society of Sports Medicine

SpO2 :

Pulse oxygen saturation

TL:

Training load

\({\dot {V}_{\text{E}}}\)/\(\dot {V}{\text{C}}{{\text{O}}_2}\) :

Ventilatory equivalent of carbon dioxide

\({\dot {V}_{\text{E}}}\)/\(\dot {V}{{\text{O}}_2}\) :

Ventilatory equivalent of oxygen

\(\dot {V}{{\text{O}}_{{\text{2max}}}}\) :

Maximal oxygen consumption

VT1:

First ventilatory threshold

VT2:

Second ventilatory threshold

References

  • Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  • Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919

    Article  PubMed  Google Scholar 

  • Bonetti DL, Hopkins WG (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 39:107–127

    Article  PubMed  Google Scholar 

  • Bouchard C, Rankinen T (2001) Individual differences in response to regular physical activity. Med Sci Sports Exerc 33:S446–S451 (discussion S452–443)

    Article  CAS  PubMed  Google Scholar 

  • Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Perusse L, Leon AS, Rao DC (1999) Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985) 87:1003–1008

    Article  CAS  Google Scholar 

  • Brocherie F, Millet GP, Hauser A, Steiner T, Rysman J, Wehrlin JP, Girard O (2015) “Live high-train low and high” hypoxic training improves team-sport performance. Med Sci Sports Exerc 47:2140–2149

    Article  PubMed  Google Scholar 

  • Burtscher M, Nachbauer W, Baumgartl P, Philadelphy M (1996) Benefits of training at moderate altitude versus sea level training in amateur runners. Eur J Appl Physiol Occup Physiol 74:558–563

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DS, Bentho O, Park MY, Sharabi Y (2011) Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 96:1255–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T, Schumacher YO, Schmidt WF (2013) Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med 47(Suppl 1):i31–i39

    Article  PubMed  PubMed Central  Google Scholar 

  • Halson SL, Jeukendrup AE (2004) Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 34:967–981

    Article  PubMed  Google Scholar 

  • Hauser A, Schmitt L, Troesch S, Saugy JJ, Cejuela-Anta R, Faiss R, Robinson N, Wehrlin JP, Millet GP (2016) Similar hemoglobin mass response in hypobaric and normobaric hypoxia in athletes. Med Sci Sports Exerc 48:734–741

    Article  CAS  PubMed  Google Scholar 

  • Hautala AJ, Makikallio TH, Kiviniemi A, Laukkanen RT, Nissila S, Huikuri HV, Tulppo MP (2003) Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am J Physiol Heart Circ Physiol 285:H1747–H1752

    Article  CAS  PubMed  Google Scholar 

  • Hautala AJ, Kiviniemi AM, Makikallio TH, Kinnunen H, Nissila S, Huikuri HV, Tulppo MP (2006) Individual differences in the responses to endurance and resistance training. Eur J Appl Physiol 96:535–542

    Article  PubMed  Google Scholar 

  • Hedelin R, Kentta G, Wiklund U, Bjerle P, Henriksson-Larsen K (2000) Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 32:1480–1484

    Article  CAS  PubMed  Google Scholar 

  • Hedelin R, Bjerle P, Henriksson-Larsen K (2001) Heart rate variability in athletes: relationship with central and peripheral performance. Med Sci Sports Exerc 33:1394–1398

    Article  CAS  PubMed  Google Scholar 

  • Iellamo F, Legramante JM, Pigozzi F, Spataro A, Norbiato G, Lucini D, Pagani M (2002) Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes. Circulation 105:2719–2724

    Article  PubMed  Google Scholar 

  • Kiviniemi AM, Hautala AJ, Makikallio TH, Seppanen T, Huikuri HV, Tulppo MP (2006) Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R–R interval. Eur J Appl Physiol 96:686–692

    Article  PubMed  Google Scholar 

  • Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP (2007) Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol 101:743–751

    Article  PubMed  Google Scholar 

  • Kiviniemi AM, Hautala AJ, Kinnunen H, Nissila J, Virtanen P, Karjalainen J, Tulppo MP (2010) Daily exercise prescription on the basis of HR variability among men and women. Med Sci Sports Exerc 42:1355–1363

    Article  PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    Article  CAS  PubMed  Google Scholar 

  • Maso F, Lac G, Filaire E, Michaux O, Robert A (2004) Salivary testosterone and cortisol in rugby players: correlation with psychological overtraining items. Br J Sports Med 38:260–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean BD, Buttifant D, Gore CJ, White K, Kemp J (2013) Year-to-year variability in haemoglobin mass response to two altitude training camps. Br J Sports Med 47(Suppl 1):i51–i58

    Article  PubMed  PubMed Central  Google Scholar 

  • Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40:1–25

    Article  PubMed  Google Scholar 

  • Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard JC (1996) Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc 28:251–258

    Article  CAS  PubMed  Google Scholar 

  • Passino C, Bernardi L, Spadacini G, Calciati A, Robergs R, Anand I, Greene R, Martignoni E, Appenzeller O (1996) Autonomic regulation of heart rate and peripheral circulation: comparison of high altitude and sea level residents. Clin Sci (Lond) 91 Suppl:81–83

    Article  CAS  Google Scholar 

  • Perini R, Veicsteinas A (2003) Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 90:317–325

    Article  PubMed  Google Scholar 

  • Perini R, Orizio C, Baselli G, Cerutti S, Veicsteinas A (1990) The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol Occup Physiol 61:143–148

    Article  CAS  PubMed  Google Scholar 

  • Perini R, Milesi S, Biancardi L, Veicsteinas A (1996) Effects of high altitude acclimatization on heart rate variability in resting humans. Eur J Appl Physiol Occup Physiol 73:521–528

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151–H153

    CAS  PubMed  Google Scholar 

  • Reinhard U, Muller PH, Schmulling RM (1979) Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respir Int Rev Thorac Dis 38:36–42

    CAS  Google Scholar 

  • Reyes Del Paso GA, Langewitz W, Mulder LJ, van Roon A, Duschek S (2013) The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology 50:477–487

    Article  Google Scholar 

  • Robach P, Lundby C (2012) Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 22:303–305

    Article  CAS  PubMed  Google Scholar 

  • Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP (2016) Same performance changes after live high-train low in normobaric vs. hypobaric hypoxia. Front Physiol 7:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitt L, Hellard P, Millet GP, Roels B, Richalet JP, Fouillot JP (2006a) Heart rate variability and performance at two different altitudes in well-trained swimmers. Int J Sports Med 27:226–231

    Article  CAS  PubMed  Google Scholar 

  • Schmitt L, Millet G, Robach P, Nicolet G, Brugniaux JV, Fouillot JP, Richalet JP (2006b) Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol 97:627–636

    Article  PubMed  Google Scholar 

  • Schmitt L, Fouillot JP, Millet GP, Robach P, Nicolet G, Brugniaux J, Richalet JP (2008) Altitude, heart rate variability and aerobic capacities. Int J Sports Med 29:300–306

    Article  CAS  PubMed  Google Scholar 

  • Schmitt L, Regnard J, Desmarets M, Mauny F, Mourot L, Fouillot JP, Coulmy N, Millet G (2013) Fatigue shifts and scatters heart rate variability in elite endurance athletes. PLoS One 8:e71588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt L, Regnard J, Parmentier AL, Mauny F, Mourot L, Coulmy N, Millet GP (2015) Typology of “fatigue” by heart rate variability analysis in elite nordic-skiers. Int J Sports Med 36:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Schmitt L, Regnard J, Auguin D, Millet G (2016) Monitoring training and fatigue status with heart rate variability: case study in a swimming Olympic champion. J Fitness Res 5:38–45

    Google Scholar 

  • Sevre K, Bendz B, Hanko E, Nakstad AR, Hauge A, Kasin JI, Lefrandt JD, Smit AJ, Eide I, Rostrup M (2001) Reduced autonomic activity during stepwise exposure to high altitude. Acta Physiol Scand 173:409–417

    Article  CAS  PubMed  Google Scholar 

  • Stray-Gundersen J, Chapman RF, Levine BD (2001) “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol 91:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Task-Force (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  • Zupet P, Princi T, Finderle Z (2009) Effect of hypobaric hypoxia on heart rate variability during exercise: a pilot field study. Eur J Appl Physiol 107:345–350

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the athletes of the French national Nordic-combined and Cross-country skiing (men and women) teams and their coaches: for Nordic-combined—Jérôme Laheurte and Cyril Michaud-Fidey; for cross-country skiing—Vincent Vittoz and Thibaut Chene.

Funding

No external funding was received for this work from NIH; Welcome Trust; HHMI; others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Schmitt.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, L., Willis, S.J., Fardel, A. et al. Live high–train low guided by daily heart rate variability in elite Nordic-skiers. Eur J Appl Physiol 118, 419–428 (2018). https://doi.org/10.1007/s00421-017-3784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3784-9

Keywords

Navigation