Skip to main content

Advertisement

Log in

Effects of a 1-year randomised controlled trial of resistance training on blood lipid profile and chylomicron concentration in older men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Resistance exercise is promoted in older adults for its ability to improve muscle mass, strength and, hence, in reducing falls. However, its effects on blood lipids and CVD risk are less well established, particularly in this age group. This study aimed to investigate whether a 1-year resistance exercise program improves lipid profile and chylomicron concentration in older men.

Methods

Participants were randomised to either three, 1 h resistance training sessions per week (RE) or an active control group [asked to undertake three 30 min walking sessions per week (AC)]. Fasting blood samples were collected at 0, 6, and 12 months for determination of lipid profile and glycaemic control. Diet, morphological and activity data were also collected at these time points.

Results

Following 12 months, the RE intervention group had greater improvements in cholesterol profile; LDL-cholesterol concentration significantly decreased by 0.2 (0.2) mM [mean (SEM)] compared to control (P < 0.05). The RE group also exhibited a significant increase in lean body mass of 0.9 (1.3) kg after 12 months compared to the AC group (P < 0.05). There was no treatment or time effect on other anthropometric measures or fasting triacylglycerol, glucose, insulin or chylomicron concentrations.

Conclusion

The observed improvements in lean body mass and cholesterol profile promote the implementation of a resistance exercise intervention in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

6MWT:

6-Minute walk test

AC:

Active control

AE:

Aerobic exercise

CHD:

Coronary heart disease

CVD:

Cardiovascular disease

HDL:

High-density lipoprotein

LBM:

Lean body mass

LDL:

Low-density lipoprotein

MET:

Metabolic equivalent

MetS:

Metabolic syndrome

NEFA:

Non-esterified fatty acids

RE:

Resistance exercise

T2DM:

Type-2 diabetes mellitus

TAG:

Triacylglycerol

References

  • Ahmed HM, Blaha MJ, Nasir K, Rivera JJ, Blumenthal RS (2012) Effects of physical activity on cardiovascular disease. Am J Cardiol 109:288–295. doi:10.1016/j.amjcard.2011.08.042

    Article  PubMed  Google Scholar 

  • Arnarson A, Ramel A, Geirsdottir OG, Jonsson PV, Thorsdottir I (2014) Changes in body composition and use of blood cholesterol lowering drugs predict changes in blood lipids during 12 weeks of resistance exercise training in old adults. Aging Clin Exp Res 26:287–292. doi:10.1007/s40520-013-0172-0

    Article  CAS  PubMed  Google Scholar 

  • Bairaktari E et al (2000) Estimation of LDL cholesterol based on the Friedewald formula and on apo B levels. Clin Biochem 33:549–555

    Article  CAS  PubMed  Google Scholar 

  • Banz WJ et al (2003) Effects of resistance versus aerobic training on coronary artery disease risk factors. Exp Biol Med (Maywood) 228:434–440

    CAS  Google Scholar 

  • Bassi N, Karagodin I, Wang S, Vassallo P, Priyanath A, Massaro E, Stone NJ (2014) Lifestyle modification for metabolic syndrome: a systematic review. Am J Med 127:1242.e1–1242.e10. doi:10.1016/j.amjmed.2014.06.035

    Article  Google Scholar 

  • Bateman LA et al (2011) Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the studies of a targeted risk reduction intervention through defined exercise—STRRIDE-AT/RT). Am J Cardiol 108:838–844. doi:10.1016/j.amjcard.2011.04.037

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlin JA, Colditz GA (1990) A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol 132:612–628

    CAS  PubMed  Google Scholar 

  • Blackford K, Jancey J, Lee AH, James AP, Waddell T, Howat P (2016) Home-based lifestyle intervention for rural adults improves metabolic syndrome parameters and cardiovascular risk factors: a randomised controlled trial. Prev Med. doi:10.1016/j.ypmed.2016.05.012

    PubMed  Google Scholar 

  • Braith RW, Stewart KJ (2006) Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 113:2642–2650. doi:10.1161/CIRCULATIONAHA.105.584060

    Article  PubMed  Google Scholar 

  • Carroll S, Dudfield M (2004) What is the relationship between exercise and metabolic abnormalities? Rev Metab Syndr Sports Med 34:371–418

    Google Scholar 

  • Cohen JC, Noakes TD, Benade AJ (1989) Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am J Clin Nutr 49:443–447

    CAS  PubMed  Google Scholar 

  • Corbin DE (2001) Exercise programming for older adults. In: Darcy P (ed) ACSM’s resource manual for guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Philadelphia, pp 529–536

    Google Scholar 

  • Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L (2011) Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension 58:950–958. doi:10.1161/HYPERTENSIONAHA.111.177071

    Article  CAS  PubMed  Google Scholar 

  • Durstine JL, Grandjean PW, Cox CA, Thompson PD (2002) Lipids, lipoproteins, and exercise. J Cardpulm Rehabil 22:385–398

    Article  Google Scholar 

  • Eriksson J, Taimela S, Eriksson K, Parviainen S, Peltonen J, Kujala U (1997) Resistance training in the treatment of non-insulin-dependent diabetes mellitus. Int J Sports Med 18:242–246. doi:10.1055/s-2007-972627

    Article  CAS  PubMed  Google Scholar 

  • Fahlman MM, Boardley D, Lambert CP, Flynn MG (2002) Effects of endurance training and resistance training on plasma lipoprotein profiles in elderly women. J Gerontol Ser A Biol Sci Med Sci 57:B54–B60

    Article  Google Scholar 

  • Fluckey JD, Hickey MS, Brambrink JK, Hart KK, Alexander K, Craig BW (1994) Effects of resistance exercise on glucose tolerance in normal and glucose-intolerant subjects. J Appl Physiol 77:1087–1092

    CAS  PubMed  Google Scholar 

  • Francis K (1996) Physical activity in the prevention of cardiovascular disease. Phys Ther 76:456–468

    CAS  PubMed  Google Scholar 

  • Freese EC, Gist NH, Cureton KJ (2014) Effect of prior exercise on postprandial lipemia: an updated quantitative review. J Appl Physiol 116:67–75. doi:10.1152/japplphysiol.00623.2013

    Article  CAS  PubMed  Google Scholar 

  • Gavin C et al (2010) Resistance exercise but not aerobic exercise lowers remnant-like lipoprotein particle cholesterol in type 2 diabetes: a randomized controlled trial. Atherosclerosis 213:552–557. doi:10.1016/j.atherosclerosis.2010.08.071

    Article  CAS  PubMed  Google Scholar 

  • Gill JM, Hardman AE (2003) Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review). J Nutr Biochem 14:122–132

    Article  CAS  PubMed  Google Scholar 

  • Gordon B, Chen S, Durstine JL (2014) The effects of exercise training on the traditional lipid profile and beyond. Curr Sports Med Rep 13:253–259. doi:10.1249/JSR.0000000000000073

    Article  PubMed  Google Scholar 

  • Hagerman FC et al (2000) Effects of high-intensity resistance training on untrained older men. I. Strength, cardiovascular, and metabolic responses. J Gerontol Ser A Biol Sci Med Sci 55:B336–B346

    Article  CAS  Google Scholar 

  • Hakkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ (2000) Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 83:51–62. doi:10.1007/s004210000248

    Article  CAS  PubMed  Google Scholar 

  • Hunter GR, McCarthy JP, Bamman MM (2004) Effects of resistance training on older adults. Sports Med 34:329–348

    Article  PubMed  Google Scholar 

  • Hurley BF, Roth SM (2000) Strength training in the elderly: effects on risk factors for age-related diseases. Sports Med 30:249–268

    Article  CAS  PubMed  Google Scholar 

  • Hurley BF, Hanson ED, Sheaff AK (2011) Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 41:289–306. doi:10.2165/11585920-000000000-00000

    Article  PubMed  Google Scholar 

  • James AP, Slivkoff-Clark K, Mamo JC (2007) Prior exercise does not affect chylomicron particle number following a mixed meal of moderate fat content. Lipids Health Dis 6:8. doi:10.1186/1476-511X-6-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurca R et al (2004) Associations of muscle strength and fitness with metabolic syndrome in men. Med Sci Sports Exerc 36:1301–1307

    Article  PubMed  Google Scholar 

  • Jurca R, Lamonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc 37:1849–1855

    Article  PubMed  Google Scholar 

  • Kelley GA, Kelley KS (2009a) Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med 48:9–19. doi:10.1016/j.ypmed.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  • Kelley GA, Kelley KS (2009b) Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med 49:473–475. doi:10.1016/j.ypmed.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  • Kelley GA, Kelley KS, Vu Tran Z (2005) Aerobic exercise, lipids and lipoproteins in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Obes (Lond) 29:881–893. doi:10.1038/sj.ijo.0802959

    Article  CAS  Google Scholar 

  • Kelley GA, Kelley KS, Roberts S, Haskell W (2012) Comparison of aerobic exercise, diet or both on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Clin Nutr 31:156–167. doi:10.1016/j.clnu.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  • Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86:205–243. doi:10.1152/physrev.00023.2004

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim DG (2013) Effect of long-term resistance exercise on body composition, blood lipid factors, and vascular compliance in the hypertensive elderly men. J Exerc Rehabil 9:271–277. doi:10.12965/jer.130010

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita M et al (2009) Increased serum apolipoprotein B48 concentration in patients with metabolic syndrome. J Atheroscler Thromb 16:517–522

    Article  CAS  PubMed  Google Scholar 

  • Kraus WE, Slentz CA (2009) Exercise training, lipid regulation, and insulin action: a tangled web of cause and effect. Obesity 17(Suppl 3):S21–S26. doi:10.1038/oby.2009.384

    Article  CAS  PubMed  Google Scholar 

  • Lapice E, Cipriano P, Patti L, Romano G, Vaccaro O, Rivellese AA (2012) Fasting apolipoprotein B48 is associated with asymptomatic peripheral arterial disease in type 2 diabetic subjects: a case-control study. Atherosclerosis 223:504–506. doi:10.1016/j.atherosclerosis.2012.05.038

    Article  CAS  PubMed  Google Scholar 

  • Lin X et al (2015) Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 4 doi:10.1161/JAHA.115.002014

  • Mancera-Romero J, Sanchez-Chaparro MA, Rioja J, Ariza MJ, Olivecrona G, Gonzalez-Santos P, Valdivielso P (2013) Fasting apolipoprotein B48 is a marker for peripheral arterial disease in type 2 diabetes. Acta Diabetol 50:383–389. doi:10.1007/s00592-012-0434-x

    Article  CAS  PubMed  Google Scholar 

  • Manning JM, Dooly-Manning CR, White K, Kampa I, Silas S, Kesselhaut M, Ruoff M (1991) Effects of a resistive training program on lipoprotein–lipid levels in obese women. Med Sci Sports Exerc 23:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Marques E, Carvalho J, Soares JM, Marques F, Mota J (2009) Effects of resistance and multicomponent exercise on lipid profiles of older women. Maturitas 63:84–88. doi:10.1016/j.maturitas.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  • Masuda D et al (2014) Reference interval for the apolipoprotein B-48 concentration in healthy Japanese individuals. J Atheroscler Thromb 21:618–627

    PubMed  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  • Mecca MS, Moreto F, Burini FH, Dalanesi RC, McLellan KC, Burini RC (2012) Ten-week lifestyle changing program reduces several indicators for metabolic syndrome in overweight adults. Diabetol Metab Syndr 4:1. doi:10.1186/1758-5996-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng DS (2013) Diabetic dyslipidemia: from evolving pathophysiological insight to emerging therapeutic targets. Can J Diabetes 37:319–326. doi:10.1016/j.jcjd.2013.07.062

    Article  PubMed  Google Scholar 

  • Ostchega Y, Dillon CF, Lindle R, Carroll M, Hurley BF (2004) Isokinetic leg muscle strength in older Americans and its relationship to a standardized walk test: data from the national health and nutrition examination survey 1999–2000. J Am Geriatr Soc 52:977–982. doi:10.1111/j.1532-5415.2004.52268.x

    Article  PubMed  Google Scholar 

  • Pattyn N, Cornelissen VA, Eshghi SR, Vanhees L (2013) The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med 43:121–133. doi:10.1007/s40279-012-0003-z

    Article  PubMed  Google Scholar 

  • Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43:249–258. doi:10.1249/MSS.0b013e3181eb6265

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhakaran B, Dowling EA, Branch JD, Swain DP, Leutholtz BC (1999) Effect of 14 weeks of resistance training on lipid profile and body fat percentage in premenopausal women. Br J Sports Med 33:190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purser JL, Pieper CF, Poole C, Morey M (2003) Trajectories of leg strength and gait speed among sedentary older adults: longitudinal pattern of dose response. J Gerontol Ser A Biol Sci Med Sci 58:M1125–M1134

    Article  Google Scholar 

  • Sakai N et al (2003) Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J Lipid Res 44:1256–1262. doi:10.1194/jlr.M300090-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Sallinen J, Fogelholm M, Volek JS, Kraemer WJ, Alen M, Hakkinen K (2007) Effects of strength training and reduced training on functional performance and metabolic health indicators in middle-aged men. Int J Sports Med 28:815–822. doi:10.1055/s-2007-964901

    Article  CAS  PubMed  Google Scholar 

  • Sato I et al (2009) Significance of measuring serum concentrations of remnant lipoproteins and apolipoprotein B-48 in fasting period. J Atheroscler Thromb 16:12–20 (JST.JSTAGE/jat/E596 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Seynnes O, Fiatarone Singh MA, Hue O, Pras P, Legros P, Bernard PL (2004) Physiological and functional responses to low-moderate versus high-intensity progressive resistance training in frail elders. J Gerontol Ser A Biol Sci Med Sci 59:503–509

    Article  Google Scholar 

  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, Nair KS (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Slivkoff-Clark KM, James AP, Mamo JC (2012) The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men. Nutr Metab (Lond) 9:9. doi:10.1186/1743-7075-9-9

    Article  CAS  Google Scholar 

  • Strasser B, Siebert U, Schobersberger W (2010) Resistance training in the treatment of the metabolic syndrome: a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med 40:397–415. doi:10.2165/11531380-000000000-00000

    Article  PubMed  Google Scholar 

  • Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS (2009) Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 60:614–632. doi:10.1177/0003319708324927

    Article  PubMed  Google Scholar 

  • Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB (2002) Exercise type and intensity in relation to coronary heart disease in men. Jama 288:1994–2000

    Article  PubMed  Google Scholar 

  • Vincent KR, Braith RW, Bottiglieri T, Vincent HK, Lowenthal DT (2003) Homocysteine and lipoprotein levels following resistance training in older adults. Prev Cardiol 6:197–203

    Article  CAS  PubMed  Google Scholar 

  • Whiteford J et al (2010) Effects of a 1-year randomized controlled trial of resistance training on lower limb bone and muscle structure and function in older men. Osteoporos Int 21:1529–1536. doi:10.1007/s00198-009-1132-6

    Article  CAS  PubMed  Google Scholar 

  • Williams MA, Stewart KJ (2009) Impact of strength and resistance training on cardiovascular disease risk factors and outcomes in older adults. Clin Geriatr Med 25:703–714. doi:10.1016/j.cger.2009.07.003 (ix)

    Article  PubMed  Google Scholar 

  • Williams MA et al (2007) Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116:572–584. doi:10.1161/CIRCULATIONAHA.107.185214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Arthritis and Osteoporosis Foundation of Western Australia and Curtin University. Support was also provided by the Department of Endocrinology at Sir Charles Gairdner Hospital, School of Sport Science and Exercise Health at University of Western Australia and Curtin University. We thank the staff and practical students at the rehabilitation gym of the School of Sport Science and Exercise Health at UWA for assistance with supervision of resistance exercise sessions and strength and fitness testing and the volunteers whose cooperation and dedication made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. James.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participant were in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, A.P., Whiteford, J., Ackland, T.R. et al. Effects of a 1-year randomised controlled trial of resistance training on blood lipid profile and chylomicron concentration in older men. Eur J Appl Physiol 116, 2113–2123 (2016). https://doi.org/10.1007/s00421-016-3465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3465-0

Keywords

Navigation