Skip to main content
Log in

Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We previously reported that high load resistance exercise with superimposed whole-body vibration and sustained vascular occlusion (vibroX) markedly improves cycling endurance capacity, increases capillary-to-fibre ratio and skeletal muscle oxidative enzyme activity in untrained young women. These findings are intriguing, since increases in oxidative muscle phenotype and endurance capacity are typically induced by endurance but not heavy resistance exercise. Here, we tested the hypothesis that vibroX activates genes associated with mitochondrial biogenesis and angiogenesis. Eight healthy, recreationally resistance-trained young men performed either vibroX or resistance exercise (RES) in a randomised, cross-over design. Needle biopsies (M. vastus lateralis) were obtained at rest and 3 h post-exercise. Changes in relative gene expression levels were assessed by real-time quantitative PCR. After vibroX, vascular endothelial growth factor and peroxisome proliferator-activated receptor-γ coactivator 1α mRNA abundances increased to 2- and 4.4-fold, respectively, but did not significantly change above resting values after RES. Other genes involved in mitochondrial biogenesis were not affected by either exercise modality. While vibroX increased the expression of hexokinase II, xanthine dehydrogenase, and manganese superoxide dismutase mRNA, there were no changes in these transcripts after RES. This study demonstrates that high load resistance exercise with superimposed whole-body vibration and sustained vascular occlusion activates metabolic and angiogenic gene programs, which are usually activated after endurance but not resistance exercise. Thus, targeted modification of high load resistance exercise by vibration and vascular occlusion might represent a novel strategy to induce endurance-type muscle adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011

    PubMed  CAS  Google Scholar 

  • American college of sports medicine position stand (2009) Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708

    Article  Google Scholar 

  • Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Gimun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1 alpha. Nature 451:1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z (2009) The transcriptional coactivator PGC-1 alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA 106:21401–21406

    Article  PubMed  CAS  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, 2nd edn. Hillsdale, New Jersey

    Google Scholar 

  • De Luca CJ, Foley PJ, Erim Z (1996) Motor unit control properties in constant-force isometric contractions. J Neurophysiol 76:1503–1516

    PubMed  Google Scholar 

  • Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, Moyna NM, Zierath JR, O’Gorman DJ (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol 588:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  • Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z (2010) PGC-1 alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not type–type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 298:C572–C579

    Article  PubMed  CAS  Google Scholar 

  • Godin R, Ascah A, Daussin FN (2010) Intensity-dependent activation of intracellular signalling pathways in skeletal muscle: role of fibre type recruitment during exercise. J Physiol 588:4073–4074

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ (1999) Exercise induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–H685

    PubMed  CAS  Google Scholar 

  • Gustafsson T, Knutsson A, Puntschart A, Kaijser L, Nordqvist AC, Sundberg CJ, Jansson E (2002) Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflugers Arch 444:752–759

    Article  PubMed  CAS  Google Scholar 

  • Hellsten-Westing Y (1993) Immunohistochemical localisation of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry 100:215–222

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    PubMed  CAS  Google Scholar 

  • Item F, Denkinger J, Fontana P, Weber M, Boutellier U, Toigo M (2011) Combined effects of whole-body vibration, resistance exercise, and vascular occlusion on skeletal muscle and performance. Int J Sports Med 32:781–787

    Article  PubMed  CAS  Google Scholar 

  • Kang C, O’Moore KM, Dickman JR, Ji LL (2009) Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1 alpha signalling is redox sensitive. Free Radic Biol Med 47:1394–1400

    Article  PubMed  CAS  Google Scholar 

  • Nordsborg NB, Lundby C, Leick L, Pilegaard H (2010) Relative workload determines exercise-induced increases in PGC-1 alpha mRNA. Med Sci Sports Exerc 42:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T (2004) PGC-1 alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194

    Article  PubMed  CAS  Google Scholar 

  • Olfert IM, Howlett RA, Wagner PD, Breen EC (2010) Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol 299:R1059–R1067

    Article  PubMed  CAS  Google Scholar 

  • Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1 alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  PubMed  CAS  Google Scholar 

  • Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol 97:1119–1128

    Article  PubMed  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor- gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  PubMed  CAS  Google Scholar 

  • Richardson RS, Wagner H, Mudaliar SR, Henry R, Noyszewski EA, Wagner PD (1999) Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. Am J Physiol 277:H2247–H2252

    PubMed  CAS  Google Scholar 

  • Rittweger J, Schiessl H, Felsenberg D (2001) Oxygen-uptake during whole body vibration exercise: comparison with squatting as a slow voluntary movement. Eur J Appl Physiol 86:169–173

    Article  PubMed  CAS  Google Scholar 

  • Rittweger J, Ehrig J, Just K, Mutschelknauss M, Kirsch KA, Felsenberg D (2002) Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load. Int J Sports Med 23:428–432

    Article  PubMed  CAS  Google Scholar 

  • Rosnow RL, Rosenthal R, Rubin DB (2000) Contrasts and correlations in effect-size estimation. Psychol Sci 11:446–453

    Article  PubMed  CAS  Google Scholar 

  • Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576:1–14

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1 alpha and 1 beta (PGC-1 alpha and PGC-1 beta) in muscle cells. J Biol Chem 278:26597–26603

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jaeger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  PubMed  CAS  Google Scholar 

  • Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H (2010) Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 108:1563–1567

    Article  PubMed  Google Scholar 

  • Suhr F, Brixius K, de Marees M, Boelck B, Kleinoeder H, Achtzehn S, Bloch W, Mester J (2007) Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol 103:474–483

    Article  PubMed  CAS  Google Scholar 

  • Sundberg CJ (1994) Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand 615:1–50

    CAS  Google Scholar 

  • Tang JE, Hartman JW, Phillips SM (2006) Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Physiol Nutr Metab 31:495–501

    Article  PubMed  CAS  Google Scholar 

  • Tesch PA (1988) Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 20:S132–S134

    Article  PubMed  CAS  Google Scholar 

  • Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97:643–663

    Article  PubMed  Google Scholar 

  • Vina J, Gimeno A, Sastre J, Desco C, Asensi M, Pallardo FV, Cuesta A, Ferrero JA, Terada LS, Repine JE (2000) Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 49:539–544

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kerrick WG (2002) The off rate of Ca2+ from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol 92:2409–2418

    PubMed  CAS  Google Scholar 

  • Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the participants for their effort and time commitment. This work was supported by the University of Zurich research priority program “Integrative Human Physiology” and the Zürcher Kantonalbank (ZKB). The Galileo® vibration plate was kindly provided by Novotec, Pforzheim, Germany.

Conflict of interest

The authors declare no conflict of interests.

Ethical standard

The experimental protocol was approved by the ethics committee of the canton of Zurich, and the study was performed in accordance with the ethical standards laid down in the Declaration of Helsinki for human experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Toigo.

Additional information

Communicated by Martin Flueck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Item, F., Nocito, A., Thöny, S. et al. Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances. Eur J Appl Physiol 113, 1081–1090 (2013). https://doi.org/10.1007/s00421-012-2524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2524-4

Keywords

Navigation