Skip to main content
Log in

Universal relations in nonlinear electro-magneto-elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this article is to develop a class of universal relations for an incompressible isotropic electro-magneto-elastic (hereafter EME) material in order to generalize the continuum concept to electro-magneto-elasticity. In line with that, we adopt an electro-magneto-elasticity theory following the second law of thermodynamics-based approach. More precisely, we first extend a thermodynamically consistent deformation of a continua to a coupled EME interaction through a new amended energy function (hereafter AEF). This AEF succeeds the physical insight of the Maxwell stress tensor (hereafter MST) under large deformations. Next, we introduce a new inequality \(\mathbf{Tb} -\mathbf{bT} \ne 0\) for a class of an EME material parallel to an equation \(\mathbf{Tb} -\mathbf{bT} = 0\) for a class of an elastic material existing in the literature. At last, the formulated universal relations are applied to some homogeneous and non-homogeneous deformations to exemplify the consequences of an electromagnetic field on the mechanical deformation. Additionally, the validity of the proposed universal relations in electro-magneto-elasticity is also checked by obtaining an existing universal relation in nonlinear elasticity in the absence of an applied electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kumar, D., Sarangi, S.: Electro-magnetostriction under large deformation: modeling with experimental validation. Mech. Mater. 128(1), 1–10 (2019)

    Article  Google Scholar 

  2. Kumar, D., Sarangi, S.: Instability analysis of an electro-magneto-elastic actuator: a continuum mechanics approach. AIP Adv. 8(11), 115314 (2018)

    Article  Google Scholar 

  3. Kumar, D., Sarangi, S.: Electro-mechanical instability modelling in elastomeric actuators: a second law of thermodynamics-based approach. Soft Mater. 17, 1–13 (2019)

    Article  Google Scholar 

  4. Kumar, D., Sarangi, S.: Dynamic modeling of a dielectric elastomeric spherical actuator: an energy-based approach. Soft Mater. 1–10 (2019)

  5. Bustamante, R., Dorfmann, A., Ogden, R.: On electric body forces and maxwell stresses in nonlinearly electroelastic solids. Int. J. Eng. Sci. 47(11), 1131–1141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlson, J .D., Jolly, M .R.: Mr fluid, foam and elastomer devices. Mechatronics 10(4), 555–569 (2000)

    Article  Google Scholar 

  7. Kumar, D., Sarangi, S.: Pre-stretch and frequency variation effect on the dielectric permittivity of a dielectric elastomer: an amended permittivity model. Sādhanā 44(8), 173 (2019)

    Article  MathSciNet  Google Scholar 

  8. Saccomandi, G.: Universal results in finite elasticity, nonlinear elasticity: theory and applications, volume 283 of London Math. Soc. Lecture Note Ser., 97–134 (2001)

  9. Saccomandi, G.: Universal Solutions and Relations in Finite Elasticity, Topics in Finite Elasticity, pp. 95–130. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  10. Kumar, D., Sarangi, S., Saxena, P.: Universal relations in coupled electro-magneto-elasticity. Mech. Mater. 103308 (2020)

  11. Rivlin, R.S.: Torsion of a Rubber Cylinder, Collected Papers of RS Rivlin, pp. 3–8. Springer, Berlin (1947)

    Book  Google Scholar 

  12. Hayes, M., Knops, R.J.: On universal relations in elasticity theory. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 17(5), 636–639 (1966)

    Article  Google Scholar 

  13. Beatty, M.F.: A class of universal relations in isotropic elasticity theory. J. Elast. 17(2), 113–121 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987)

    Article  Google Scholar 

  15. Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40(2), 271–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorfmann, L., Saccomandi, G., Salvatori, M.C.: On the use of universal relations in modeling nonlinear electro-elastic materials. Int. J. Mech. Sci. 149, 577–582 (2018)

    Article  Google Scholar 

  17. Bustamante, R., Ogden, R.: Universal relations for nonlinear electroelastic solids. Acta Mech. 182(1), 125–140 (2006)

    Article  MATH  Google Scholar 

  18. Bustamante, R., Dorfmann, A., Ogden, R.: Universal relations in isotropic nonlinear magnetoelasticity. Q. J. Mech. Appl. Math. 59(3), 435–450 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27(1), 28–37 (1972)

    Google Scholar 

  20. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  21. Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)

    Article  MATH  Google Scholar 

  22. Buchanan, G., Fong, K., Sallah, M.: A variational principle and finite element analysis for thermo-polarization gradient theory. Mech. Res. Commun. 16(6), 359–369 (1989)

    Article  MATH  Google Scholar 

  23. Tagantsev, A.K., Meunier, V., Sharma, P.: Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling. MRS Bull. 34(9), 643–647 (2009)

    Article  Google Scholar 

  24. Mohammadi, P., Liu, L., Sharma, P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. J. Appl. Mech. 81(1), 011007 (2014)

    Article  Google Scholar 

  25. Hutter, K., Ven, A.A., Ursescu, A.: Electromagnetic Field Matter Interactions in Thermoelasic Solids and Viscous Fluids, vol. 710. Springer, Berlin (2007)

    Google Scholar 

  26. Stratton, J.A.: Electromagnetic Theory. Wiley, Hoboken (2007)

    MATH  Google Scholar 

  27. Dorfmann, A., Ogden, R., Saccomandi, G.: Universal relations for non-linear magnetoelastic solids. Int. J. Non-Linear Mech. 39(10), 1699–1708 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dorfmann, A., Ogden, R.: Nonlinear electroelasticity. Acta Mech. 174(3–4), 167–183 (2005)

    Article  MATH  Google Scholar 

  29. Feng, W., Pan, E., Wang, X., Gazonas, G.: A second-order theory for magnetoelectroelastic materials with transverse isotropy. Smart Mater. Struct. 18(2), 025001 (2008)

    Article  Google Scholar 

  30. Kovetz, A.: Electromagnetic Theory. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  31. Ogden, R.W.: Non-linear Elastic Deformations. Courier Corporation, North Chelmsford (1997)

    Google Scholar 

  32. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pao, Y.-H.: Electromagnetic forces in deformable continua, In: Mechanics Today, vol. 4, pp. 209–305, (A78-35706 14-70). Pergamon Press, Inc., New York (1978). NSF-supported research, vol. 4, pp. 209–305 (1978)

  34. Choi, H.-S., Park, I.-H., Moon, W.-K.: On the physical meaning of maxwell stress tensor. Trans. Korean Inst. Electr. Eng. 58(4), 725–734 (2009)

    Google Scholar 

  35. Rinaldi, C., Brenner, H.: Body versus surface forces in continuum mechanics: is the maxwell stress tensor a physically objective cauchy stress? Phys. Rev. E 65(3), 036615 (2002)

    Article  MathSciNet  Google Scholar 

  36. Zhao, X., Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys. 104(12), 123530 (2008)

    Article  Google Scholar 

  37. Singh, M., Pipkin, A.: Controllable states of elastic dielectrics. Arch. Ration. Mech. Anal. 21(3), 169–210 (1966)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Sarangi, S. & Bhattacharyya, R. Universal relations in nonlinear electro-magneto-elasticity. Arch Appl Mech 90, 1643–1657 (2020). https://doi.org/10.1007/s00419-020-01688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01688-1

Keywords

Navigation