Skip to main content
Log in

The effect of vertical ground movement on masonry walls simulated through an elastic–plastic interphase meso-model: a case study

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present paper proposes an interphase model for the simulation of damage propagation in masonry walls in the framework of a mesoscopic approach. The model is thermodynamically consistent, with constitutive relations derived from a Helmholtz free potential energy. With respect to classic interface elements, the internal stress contribute is added to the contact stresses. It is considered that damage, in the form of loss of adhesion or cohesion, can potentially take place at each of the two blocks–mortar physical interfaces. Flow rules are obtained in the framework of the Theory of Plasticity, considering bilinear domains of ‘Coulomb with tension cut-off’ type. The model aims to be a first research step to solve the inverse problem of damage propagation in masonry generated by vertical ground movements, in order to ex-post identify the cause of a visible damage. The constitutive model is written in a discrete form for its implementation in a research-oriented finite element program. The response at the quadrature point is analyzed first. Then, the model is validated through comparisons with experimental results and finally employed to simulate the failure occurred in a wall of an ancient masonry building, where an arched collapse took place due to a lowering of the ground level under part of its foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Addessi, D., Sacco, E.: A multi-scale enriched model for the analysis of masonry panels. Int. J. Solids Struct. 49(6), 865–880 (2012)

    Article  Google Scholar 

  2. Addessi, D., Sacco, E.: Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int. J. Solids Struct. 90, 194–214 (2016)

    Article  Google Scholar 

  3. Alessandri, C., Garutti, M., Mallardo, V., Milani, G.: Crack patterns induced by foundation settlements: integrated analysis on a Renaissance Masonry Palace in Italy. Int. J. Archit. Herit. 9(2), 111–129 (2015)

    Article  Google Scholar 

  4. Alfano, G., Sacco, E.: Combining interface damage and friction in a cohesive-zone model. Int. J. Numer. Methods Eng. 68(5), 542–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amorosi, A., Boldini, D., De Felice, G., Malena, M., Sebastianelli, M.: Tunnelling-induced deformation and damage on historical masonry structures. Geotechnique 64(2), 118–130 (2014)

    Article  Google Scholar 

  6. Augarde, C.E., Burd, H.J.: Three-dimensional finite element analysis of lined tunnels. Int. J. Numer. Anal. Methods 25(3), 243–262 (2001)

    Article  MATH  Google Scholar 

  7. Baraldi, D., Reccia, E., Cecchi, A.: In plane loaded masonry walls: DEM and FEM/DEM models. A critical review. Meccanica 53(7), 1613–1628 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bianco, C., Bianco, G., De Simone, M.: Mazara: bagli, ville e torri fra il Mazaro e il Delia. Master’s thesis, Universita’ degli Studi di Palermo, Facolta’ di Architettura, Dipartimento di Rappresentazione, Palermo (1987)

  9. Burd, H.J., Houlsby, G.T., Augarde, C.E., Liu, G.: Modelling tunnelling-induced settlement of masonry buildings. Proc. Inst. Civ. Eng. Geotech. Eng. 143(1), 17–29 (2000)

    Article  Google Scholar 

  10. Can, E., Kuşcu, Ş., Kartal, M.E.: Effects of mining subsidence on masonry buildings in Zonguldak hard coal region in Turkey. Environ. Earth Sci. 66(8), 2503–2518 (2012)

    Article  Google Scholar 

  11. Fileccia Scimemi, G., Giambanco, G., Spada, A.: The interphase model applied to the analysis of masonry structures. Comput. Methods Appl. Mech. Eng. 279, 66–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galassi, S., Paradiso, M., Tempesta, G.: Non-linear analysis of masonry structures subjected to external settlements. Open J. Civ. Eng. 3(2A), 18–26 (2013)

    Article  Google Scholar 

  13. Giambanco, G., Fileccia Scimemi, G.: Mixed mode failure analysis of bonded joints with rate-dependent interface models. Int. J. Numer. Methods Eng. 67(8), 1160–1192 (2006)

    Article  MATH  Google Scholar 

  14. Giambanco, G., Mróz, Z.: The interphase model for the analysis of joints in rock masses and masonry structures. Meccanica 36(1), 111–130 (2001)

    Article  MATH  Google Scholar 

  15. Giambanco, G., Rizzo, S., Spallino, R.: Numerical analysis of masonry structures via interface models. Comput. Methods Appl. Mechods Eng. 190(49), 6493–6511 (2001)

    Article  MATH  Google Scholar 

  16. Giambanco, G., Fileccia Scimemi, G., Spada, A.: The interphase finite element. Comput. Mech. 50(3), 353–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giambanco, G., La Malfa, Ribolla E., Spada, A.: Meshless meso-modeling of masonry in the computational homogenization framework. Meccanica 53(7), 1673–1697 (2018)

  18. Giambanco, G., Di Gati, L.: A cohesive interface model for the structural mechanics of block masonry. Mech. Res. Commun. 24(5), 503–512 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giambanco, G., La Malfa, Ribolla E., Spada, A.: CH of masonry materials via meshless meso-modeling. Frattura e Integrita’ Strutturale 8(29), 150–165 (2014)

    Article  Google Scholar 

  20. Giardina, G., van de Graaf, A.V., Hendriks, M.A., Rots, J.G., Marini, A.: Numerical analysis of a masonry façade subject to tunnelling-induced settlements. Eng. Struct. 54, 234–247 (2013)

    Article  Google Scholar 

  21. Iannuzzo, A., Angelillo, M., De Chiara, E., De Guglielmo, F., De Serio, F., Ribera, F., Gesualdo, A.: Modelling the cracks produced by settlements in masonry structures. Meccanica 53(7), 1857–1873 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leonetti, L., Greco, F., Trovalusci, P., Luciano, R., Masiani, R.: A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: application to masonry structures. Compos. Part B Eng. 141, 50–59 (2018)

    Article  Google Scholar 

  23. Liu, G., Houlsby, G.T., Augarde, C.E.: 2-dimensional analysis of settlement damage to masonry buildings caused by tunnelling. Struct. Eng. 79(1), 19–25 (2000)

    Google Scholar 

  24. Lotfi, H.R., Shing, P.B.: Interface model applied to fracture of masonry structures. J. Struct. Eng. 120(1), 63–80 (1994)

    Article  Google Scholar 

  25. Lourenço, P.B., Rots, J.G.: Multisurface interface model for analysis of masonry structures. J. Eng. Mech. 123(7), 660–668 (1997)

    Article  Google Scholar 

  26. Marfia, S., Sacco, E.: Multiscale damage contact-friction model for periodic masonry walls. Comput. Methods Appl. Mech. Eng. 205–208, 189–203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Massart, T.J., Peerlings, R.H.J., Geers, M.G.D.: An enhanced multi-scale approach for masonry wall computations with localization of damage. Int. J. Numer. Methods Eng. 69(5), 1022–1059 (2007)

    Article  MATH  Google Scholar 

  28. Netzel, H., van Zijl, GPAG.: Nonlinear numerical simulation of settlement-induced damage to solid masonry walls. In: 13th International Brick Masonry Conference, Amsterdam (2004)

  29. Parrinello, F., Failla, B., Borino, G.: Cohesive-frictional interface constitutive model. Int. J. Solids Struct. 46(13), 2680–2692 (2009)

    Article  MATH  Google Scholar 

  30. Petracca, M., Pelà, L., Rossi, R., Oller, S., Camata, G., Spacone, E.: Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput. Mech. 57(2), 257–276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Portioli, F., Cascini, L.: Assessment of masonry structures subjected to foundation settlements using rigid block limit analysis. Eng. Struct. 113, 347–361 (2016)

    Article  Google Scholar 

  32. Raffa, M.L., Lebon, F., Rizzoni, R.: Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures. Meccanica 53(7), 1645–1660 (2018)

    Article  MathSciNet  Google Scholar 

  33. Serpieri, R., Albarella, M., Sacco, E.: A 3D microstructured cohesive-frictional interface model and its rational calibration for the analysis of masonry panels. Int. J. Solids Struct. 122–123, 110–127 (2017)

    Article  Google Scholar 

  34. Smoljanović, H., Nikolić, Ž., Živaljić, N.: A combined finite-discrete numerical model for analysis of masonry structures. Eng. Fract. Mech. 136, 1–14 (2015)

    Article  Google Scholar 

  35. Son, M., Cording, E.J.: Numerical model tests of building response to excavation-induced ground movements. Can. Geotech. J. 45(11), 1611–1621 (2008)

    Article  Google Scholar 

  36. Spada, A., Giambanco, G., Rizzo, P.: Damage and plasticity at the interfaces in composite materials and structures. Comput. Methods Appl. Mech. Eng. 198(49), 3884–3901 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Spada, A., Giambanco, G., La Malfa, Ribolla E.: A FE-meshless multiscale approach for masonry materials. Proc. Eng. 109, 364–371 (2015)

    Article  Google Scholar 

  38. Truong-Hong, L., Laefer, D.F.: Impact of modeling architectural detailing for predicting unreinforced masonry response to subsidence. Autom. Constr. 30, 191–204 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Prof. Giuseppe Giambanco for the profitable discussions on the constitutive model, and Miss Milena Di Benedetto for her contribution to Fig. 13.

Funding

This work was supported by Italian Ministry for University and Research (MIUR) for PRIN-15, Project No. 2015LYYXA8, Multiscale mechanical models for the design and optimization of microstructured smart materials and metamaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Spada.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spada, A. The effect of vertical ground movement on masonry walls simulated through an elastic–plastic interphase meso-model: a case study. Arch Appl Mech 89, 1655–1676 (2019). https://doi.org/10.1007/s00419-019-01535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01535-y

Keywords

Navigation