Skip to main content

Advertisement

Log in

On the emergence of out-of-plane ferroelectricity in ultrathin films

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The presence of a spontaneous and switchable polarization is the defining property of a ferroelectric material. Such materials are indispensable in a countless number of industrial and scientific applications. Furthermore, the enhancement of ferroelectric property at reduced dimensions is crucial for continuous advancement in nanoelectronic applications. In this work, we investigate the onset of out-of-plane ferroelectricity in open-circuited stress-free BaTiO\(_3\) ultrathin films by performing molecular dynamics simulations using the core–shell model potential. In doing so, we try to obtain electric polarization hysteresis loops using an appropriate range of external electric loading. It is found that out-of-plane ferroelectricity is suppressed in ultrathin films with thickness 10 or less than 10 unit cells, indicating that there exists a critical thickness for the emergence of out-of-plane ferroelectricity in ultrathin films. It is also found that the ultrathin films exhibit asymmetrical hysteresis loops slightly above the critical thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the simulations at higher temperature (\(>100\) K), additional care should be taken. In order to mitigate the risk of periodic images along the Z-direction interact with each other one could: a) visualize the motion of atoms using tools such as OVITO, and/or b) at each time step (or after every n time steps), perform a check that the atoms are within a certain region of the simulation box so as to make sure that the periodic images along the Z-direction do not interact with each other.

References

  1. Scott, J.F.: Ferroelectric Memories, vol. 3. Springer, Berlin (2013)

    Google Scholar 

  2. Xu, Y.: Ferroelectric Materials and Their Applications. Elsevier, Amsterdam (2013)

    Google Scholar 

  3. Lee, D., Lu, H., Gu, Y., Choi, S.Y., Li, S.D., Ryu, S., Paudel, T., Song, K., Mikheev, E., Lee, S., et al.: Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349(6254), 1314 (2015)

    Article  Google Scholar 

  4. Ramesh, R.: Thin Film Ferroelectric Materials and Devices, vol. 3. Springer, Berlin (1997)

    Book  Google Scholar 

  5. Lichtensteiger, C., Triscone, J.M., Junquera, J., Ghosez, P.: Ferroelectricity and tetragonality in ultrathin PbTiO\(_3\) films. Phys. Rev. Lett. 94(4), 047603 (2005)

    Article  Google Scholar 

  6. Kornev, I.A., Fu, H., Bellaiche, L.: Properties of ferroelectric ultrathin films from first principles. J. Mater. Sci. 41(1), 137 (2006)

    Article  Google Scholar 

  7. Tybell, T., Ahn, C., Triscone, J.M.: Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75(6), 856 (1999)

    Article  Google Scholar 

  8. Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 304(5677), 1650 (2004)

    Article  Google Scholar 

  9. Junquera, J., Ghosez, P.: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422(6931), 506 (2003)

    Article  Google Scholar 

  10. Tinte, S., Stachiotti, M.: Surface effects and ferroelectric phase transitions in BaTiO\(_3\) ultrathin films. Phys. Rev. B 64(23), 235403 (2001)

    Article  Google Scholar 

  11. Stachiotti, M.: Ferroelectricity in BaTiO\(_3\) nanoscopic structures. Appl. Phys. Lett. 84(2), 251 (2004)

    Article  Google Scholar 

  12. Tinte, S., Stachiotti, M., Sepliarsky, M., Migoni, R., Rodriguez, C.: Atomistic modelling of BaTiO\(_3\) based on first-principles calculations. J. Phys. Condens. Matter 11(48), 9679 (1999)

    Article  Google Scholar 

  13. Vielma, J.M., Schneider, G.: Shell model of BaTiO\(_3\) derived from ab-initio total energy calculations. J. Appl. Phys. 114(17), 174108 (2013)

    Article  Google Scholar 

  14. Waghmare, U., Rabe, K.: Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO\(_3\) Phys. Rev. B 55(10), 6161 (1997)

    Article  Google Scholar 

  15. Liu, S., Grinberg, I., Takenaka, H., Rappe, A.M.: Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO\(_3\). Phys. Rev. B 88(10), 104102 (2013)

    Article  Google Scholar 

  16. Ahn, C., Rabe, K., Triscone, J.M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303(5657), 488 (2004)

    Article  Google Scholar 

  17. Dawber, M., Rabe, K., Scott, J.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77(4), 1083 (2005)

    Article  Google Scholar 

  18. Zhou, Z., Wu, D.: Domain structures of ferroelectric films under different electrical boundary conditions. AIP Adv. 5(10), 107206 (2015)

    Article  Google Scholar 

  19. Avrami, M.: Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8(2), 212 (1940)

    Article  Google Scholar 

  20. Tagantsev, A.K., Stolichnov, I., Setter, N., Cross, J.S., Tsukada, M.: Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66(21), 214109 (2002)

    Article  Google Scholar 

  21. Shur, V.Y., Rumyantsev, E.: Kinetics of ferroelectric domain structure: retardation effects. Ferroelectrics 191(1), 319 (1997)

    Article  Google Scholar 

  22. Boddu, V., Endres, F., Steinmann, P.: Molecular dynamics study of ferroelectric domain nucleation and domain switching dynamics. Sci. Rep. 7(1), 806 (2017)

    Article  Google Scholar 

  23. Merz, W.J.: Domain formation and domain wall motions in ferroelectric BaTiO\(_3\) single crystals. Phys. Rev. 95(3), 690 (1954)

    Article  Google Scholar 

  24. Fatuzzo, E., Merz, W.J.: Switching mechanism in triglycine sulfate and other ferroelectrics. Phys. Rev. 116(1), 61 (1959)

    Article  Google Scholar 

  25. Landauer, R.: Electrostatic considerations in BaTiO\(_3\) domain formation during polarization reversal. J. Appl. Phys. 28(2), 227 (1957)

    Article  Google Scholar 

  26. Ishibashi, Y.: Theory of polarization reversals in ferroelectrics based on Landau-type free energy. Jpa. J. Appl. Phys. 31(9R), 2822 (1992)

    Article  Google Scholar 

  27. Pertsev, N.A., Contreras, J.R., Kukhar, V.G., Hermanns, B., Kohlstedt, H., Waser, R.: Coercive field of ultrathin Pb(Zr\(_0.52\)Ti\(_0.48\))O\(_3\) epitaxial films. Appl. Phys. Lett. 83(16), 3356 (2003)

    Article  Google Scholar 

  28. Vizdrik, G., Ducharme, S., Fridkin, V., Yudin, S.: Kinetics of ferroelectric switching in ultrathin films. Phys. Rev. B 68(9), 094113 (2003)

    Article  Google Scholar 

  29. Gaynutdinov, R., Minnekaev, M., Mitko, S., Tolstikhina, A., Zenkevich, A., Ducharme, S., Fridkin, V.: Polarization switching kinetics in ultrathin ferroelectric barium titanate film. Phys. B Condens. Matter 424, 8 (2013)

    Article  Google Scholar 

  30. Highland, M.J., Fister, T.T., Richard, M.I., Fong, D.D., Fuoss, P.H., Thompson, C., Eastman, J.A., Streiffer, S.K., Stephenson, G.B.: Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO\(_3\). Phys. Rev. Lett. 105(16), 167601 (2010)

    Article  Google Scholar 

  31. Endres, F., Steinmann, P.: Size effects of 109\({^\circ }\) domain walls in rhombohedral barium titanate single crystals–a molecular statics analysis. J. Appl. Phys. 119(2), 024105 (2016)

    Article  Google Scholar 

  32. Endres, F., Steinmann, P.: Molecular statics simulations of ferroelectric barium titanate in the rhombohedral phase. GAMM-Mitteilungen 38(1), 132 (2015)

    Article  MathSciNet  Google Scholar 

  33. Endres, F., Steinmann, P.: An extended molecular statics algorithm simulating the electromechanical continuum response of ferroelectric materials. Comput. Mech. 54(6), 1515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Phillpot, S.R., Sinnott, S.B., Asthagiri, A.: Atomic-level simulation of ferroelectricity in oxides: current status and opportunities. Ann. Rev. Mater. Res. 37, 239 (2007)

    Article  Google Scholar 

  35. Mitchell, P., Fincham, D.: Shell model simulations by adiabatic dynamics. J. Phys. Condens. Matter 5(8), 1031 (1993)

    Article  Google Scholar 

  36. Wolf, D., Keblinski, P., Phillpot, S., Eggebrecht, J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise \(r^{-1}\) summation. J. Chem. Phys. 110(17), 8254 (1999)

    Article  Google Scholar 

  37. Fennell, C.J., Gezelter, J.D.: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124(23), 234104 (2006)

    Article  Google Scholar 

  38. Landau, L.D., Bell, J., Kearsley, M., Pitaevskii, L., Lifshitz, E., Sykes, J.: Electrodynamics of Continuous Media, vol. 8. Elsevier, Amsterdam (2013)

    Google Scholar 

  39. Resta, R., Vanderbilt, D.: Physics of Ferroelectrics, pp. 31–68. Springer, Berlin (2007)

    Book  Google Scholar 

  40. Zhong, W., King-Smith, R., Vanderbilt, D.: Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72(22), 3618 (1994)

    Article  Google Scholar 

  41. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)

    Article  MATH  Google Scholar 

  42. Okamura, S., Miyata, S., Mizutani, Y., Nishida, T., Shiosaki, T.: Conspicuous voltage shift of DE hysteresis loop and asymmetric depolarization in Pb-based ferroelectric thin films. Jpn. J. Appl. Phys. 38(9S), 5364 (1999)

    Article  Google Scholar 

  43. Abe, K., Yanase, N., Yasumoto, T., Kawakubo, T.: Voltage shift phenomena in a heteroepitaxial BaTiO\(_3\) thin film capacitor. J. Appl. Phys. 91(1), 323 (2002)

    Article  Google Scholar 

  44. Wong, C., Shin, F.G.: Modeling of anomalous shift and asymmetric hysteresis behavior of ferroelectric thin films. J. Appl. Phys. 96(11), 6648 (2004)

    Article  Google Scholar 

  45. Kim, Y., Kim, D., Kim, J., Chang, Y., Noh, T., Kong, J., Char, K., Park, Y., Bu, S., Yoon, J.G., et al.: Critical thickness of ultrathin ferroelectric BaTiO\(_3\) films. Appl. Phys. Lett. 86(10), 102907 (2005)

    Article  Google Scholar 

  46. Ederer, C., Spaldin, N.A.: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95(25), 257601 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Both the authors would like to thank the German Research Foundation (DFG) for the financial support of this project under the research group Project FOR 1509 Ferroic Functional Materials. The second author also gratefully acknowledges the support by the Cluster of Excellence Engineering of Advanced Materials, Research Area A3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Boddu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boddu, V., Steinmann, P. On the emergence of out-of-plane ferroelectricity in ultrathin films. Arch Appl Mech 89, 1171–1181 (2019). https://doi.org/10.1007/s00419-019-01522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01522-3

Keywords

Navigation