Skip to main content
Log in

Comparison of nonlocal continualization schemes for lattice beams and plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates both stability and vibration of nonlocal beams or plates in the presence of compressive forces. Various nonlocal structural models have been proposed to capture the inherent scale effects of lattice-based beams or plates. These nonlocal models are either based on continualization of the difference equations of the original lattice problem (labeled as continualized nonlocal models), or developed from phenomenological nonlocal approaches such as Eringen’s type nonlocality. Considered herein are several continualization schemes that lead to either fourth or sixth order spatial governing differential or partial differential equation. Even if the new continualized nonlocal plate models differ in their mathematical description, they appear to furnish very close macroscopic results as shown from asymptotic expansion arguments. The continualized nonlocal beam and plate models and the phenomenological approaches are also introduced from variational arguments. The key role of boundary conditions is shown especially for Eringen’s nonlocal model that is not necessarily variationally based. For each of them, the buckling load and the natural frequencies are determined for simply supported beams and plates and compared to their counterparts obtained from the lattice model. The small length scale coefficient of the nonlocal beam or plate models is intrinsically constant and problem independent for the continualized approaches, whereas it is calibrated for the phenomenological models based on the equivalence with the reference microstructured model and consequently, depends on the load, the buckling or vibration mode or the aspect ratio. It is found that the nonlocal continualized approaches are more efficient than the nonlocal phenomenological ones. For beam problems, continualized nonlocal and phenomenological approaches such as Eringen’s nonlocal theory can become the same. However, for plate problems, phenomenological approaches may differ significantly from continualized nonlocal ones; thereby offering one the opportunity to have a new class of two-dimensional nonlocal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maugin, G.A.: Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  2. Krumhansl, J.A.: Generalized continuum field representation for lattice vibrations. In: Wallis, R.K. (ed.) Lattice Dynamics, pp. 627–634. Pergamon, London (1965)

    Chapter  Google Scholar 

  3. Krumhansl, J.A.: Mechanics of Generalized Continua. Springer, New York (1968)

    MATH  Google Scholar 

  4. Rogula, D.: Influence of spatial acoustic dispersion on dynamical properties of dislocations. Bull. Acad. Pol. Sci. Sér. Sci. Tech. 13, 337–385 (1965)

    Google Scholar 

  5. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kröner, E., Datta, B.K.: Nichtlokale elastostatik: Ableitung aus der gittertheorie. Z. Phys. 196, 203–211 (1966). (in German)

    Article  Google Scholar 

  8. Kunin, I.A.: Model of elastic medium with simple structure and space dispersion. Prykl. Mat. Mekh. 30, 542–550 (1966)

    Google Scholar 

  9. Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der elastischen Gelenkkette. Der Eisenbau 11, 437–452 (1920). (in German)

    Google Scholar 

  10. Lagrange, J.L.: Recherches sur la nature et la propagation du son Miscellanea Philosophico-Mathematica Societatis Privatae Taurinensis I, 2rd Pagination, i- 112 (see also Œuvres, Tome 1, pp 39–148) (1759) (in French)

  11. Challamel, N., Wang, C.M., Elishakoff, I.: Nonlocal or gradient elasticity macroscopic models: a question of concentrated or distributed microstructure. Mech. Res. Commun. 71, 25–31 (2016)

    Article  Google Scholar 

  12. Dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola: Volume I Commented English Translation Advanced Structured Materials, vol. 38. Springer, Berlin (2014)

    MATH  Google Scholar 

  13. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  15. Born, M., von Kármán, T.: On fluctuations in spatial grids. Phys. Z. 13, 297–309 (1912)

    MATH  Google Scholar 

  16. Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  17. Fernandez-Saez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Z., Wang, C.M., Challamel, N.: Eringen’s length scale coefficient for vibration and buckling of nonlocal rectangular plates with simply supported edges. J. Eng. Mech. 141, 04014117 (2015)

    Article  Google Scholar 

  19. Challamel, N., Lerbet, J., Wang, C.M., Zhang, Z.: Analytical length scale calibration of nonlocal continuum from a microstructured buckling model. Z. Angew. Math. Mech. 94, 402–413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Challamel, N., Hache, F., Elishakoff, E., Wang, C.M.: Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum model. Compos. Struct. 149, 145–156 (2016)

    Article  Google Scholar 

  21. Askes, H., Metrikine, A.V.: Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42, 187–202 (2005)

    Article  MATH  Google Scholar 

  22. Tollenaere, H., Caillerie, D.: Continuous modeling of lattice structures by homogenization. Adv. Eng. Softw. 29, 699–705 (1998)

    Article  Google Scholar 

  23. Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media. Math. Probl. Eng. (2010). doi:10.1155/2010/986242

  24. Kruskal, M.D., Zabusky, N.J.: Stroboscopic perturbation for treating a class of nonlinear wave equations. J. Math. Phys. 5, 231–244 (1964)

    Article  MathSciNet  Google Scholar 

  25. Rosenau, P.: Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. A 118, 222–227 (1986)

    Article  MathSciNet  Google Scholar 

  26. Rosenau, P.: Dynamics of dense lattices. Phys. Rev. B 36, 5868 (1987)

    Article  MathSciNet  Google Scholar 

  27. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 272, 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Collins, M.A.: A quasicontinuum approximation for solitons in an atomic chain. Chem. Phys. Lett. 77, 342–347 (1981)

    Article  MathSciNet  Google Scholar 

  29. Kevrekidis, P.G., Kevrekidis, I.G., Bishop, A.R., Titi, E.S.: Continuum approach to discreteness. Phys. Rev. E 65, 046613 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Andrianov, I.V., Danishevs’kyy, V.V., Kalamkarov, A.L.: Vibration localization in one-dimensional linear and nonlinear lattices: discrete and continuum models. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0688-4

    Google Scholar 

  31. Giorgio, I., Della Corte, A., dell’Isola, F. , : Dynamics of 1D nonlinear pantographic continua. Nonlinear Dyn (2016). doi:10.1007/s11071-016-3228-9

  32. Ansari, R., Hemmatnezhad, M.: Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn. (2012). doi:10.1007/s11071-011-9985-6

    MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Li, F.M., Wang, Y.Z.: Nonlocal effect on the nonlinear dynamic characteristics of buckled parametric double-layered nanoplates. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2789-y

    Google Scholar 

  34. El Naschie, M.S.: Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill, London (1991)

    Google Scholar 

  35. Challamel, N., Wang, C.M., Elishakoff, I.: Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis. Eur. J. Mech. A Solid 44, 125–135 (2014)

    Article  MathSciNet  Google Scholar 

  36. Seide, P.: Accuracy of some numerical methods for column buckling. J. Eng. Mech. 101, 549–560 (1975)

    Google Scholar 

  37. Wang, C.T.: Discussion on the paper of "Salvadori M.G., Numerical computation of buckling loads by finite differences". Trans. ASCE 116, 629–631 (1951)

    Google Scholar 

  38. Wang, C.T.: Applied Elasticity. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  39. Santoro, R., Elishakoff, I.: Accuracy of the finite difference method in stochastic settings. J. Sound Vib. 291, 275–284 (2006)

    Article  MATH  Google Scholar 

  40. Leckie, F.A., Lindberg, G.M.: The effect of lumped parameters on beam frequencies. Aeronaut. Q. 14, 224–240 (1963)

    Article  Google Scholar 

  41. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  42. Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  43. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  44. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  45. Adali, S.: Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Phys. Lett. A 372, 5701–5705 (2008)

    Article  MATH  Google Scholar 

  46. Adali, S.: Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler–Bernoulli beam model. Nanoletters 9, 1737–1741 (2009)

    Article  Google Scholar 

  47. Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T., Collet, B.: On non-conservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)

    Article  MATH  Google Scholar 

  48. Zhang, Z., Wang, C.M., Challamel, N.: Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. Int. J. Solids Struct. 51, 4307–4315 (2014)

    Article  Google Scholar 

  49. Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M., Reddy, J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chakraverty, S., Behera, L.: Free vibration of rectangular nanoplates using Rayleigh–Ritz method. Phys. E Low Dimens. Syst. Nanostruct. 56, 357–363 (2014)

    Article  MATH  Google Scholar 

  51. Phadikar, J.K., Pradhan, S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–499 (2010)

    Article  Google Scholar 

  52. Adali, S.: Variational principles and natural boundary conditions for multilayered orthotropic graphene sheets undergoing vibrations and based on nonlocal elasticity. J. Theor. Appl. Mech. 49, 621–639 (2011)

    Google Scholar 

  53. Adali, S.: Variational principles for nonlocal continuum model for orthotropic graphene sheets embedded in an elastic medium. Acta Math. Sci. 32, 325–338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Challamel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hache, F., Challamel, N., Elishakoff, I. et al. Comparison of nonlocal continualization schemes for lattice beams and plates. Arch Appl Mech 87, 1105–1138 (2017). https://doi.org/10.1007/s00419-017-1235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1235-z

Keywords

Navigation