Skip to main content

Advertisement

Log in

On the viscous dissipation modeling of thermal fluid flow in a porous medium

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Empirical constant

d :

Pore diameter

Ge:

Gebhart number

g :

Gravitational constant

K :

Permeability of the porous medium

k :

Thermal conductivity

Nu x :

Local Nusselt number

p :

Pressure

q :

Local heat flux

Ra:

Rayleigh number

\({\bar{{T}}}\) :

Temperature

T :

Non-dimensional temperature

\({\bar{{u}}, \bar{{v}}}\) :

Velocity components in the \({\bar{{x}}}\) and\({\bar{{y}}}\) directions

u, v :

Non-dimensional velocity components in the x and y directions

\({\bar{{x}}, \bar{{y}}}\) :

Cartesian coordinates

x, y :

Non-dimensional Cartesian coordinates

ρ :

Fluid density

μ :

Viscosity

ν :

Fluid kinematic viscosity

α :

Molecular thermal diffusivity

β :

Thermal expansion coefficient

ψ :

Dimensional stream function

w :

Evaluated on the wall

∞:

Evaluated at the outer edge of the boundary layer

References

  1. Salama A., Van Geel P.J.: Flow and solute transport in saturated porous media: I. The continuum hypothesis. J. Porous Media 11(4), 403 (2008)

    Article  Google Scholar 

  2. Al-Hadhrami A.K., Elliott L., Ingham D.B.: A new model for viscous dissipation in porous media across a range of permeability values. Trans. Porous Media 53, 117–122 (2003)

    Article  MathSciNet  Google Scholar 

  3. Nield D.A.: The modeling of viscous dissipation in a saturated porous medium. J. Heat Transfer 129, 1459–1463 (2007)

    Article  Google Scholar 

  4. Salama A., Van Geel P.J.: Flow and solute transport in saturated porous media: II. Violating the continuum hypothesis. J. Porous Media 11(5), 421 (2008)

    Article  Google Scholar 

  5. Magyari E., Rees D.A.S., Keller B.: Effect of viscous dissipation on the flow in fluid saturated porous media. In: Vafai, K. (eds) Hand Book of Porous Media, 2nd edn., pp. 9.364–9.404. CRC Press, Taylor and Francis (2005)

    Google Scholar 

  6. Kaviany M.: Principles of Heat Transfer in Porous Media. 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  7. Rubin H.: Heat dispersion effect on thermal convection in a porous medium layer. J. Hydrol. 21, 173–184 (1974)

    Article  Google Scholar 

  8. Plumb, O.: The effect of thermal dispersion on heat transfer in packed bed boundary layers. In: Proceedings of Ist ASME/JSME Thermal Engineering Joint Conference, vol. 2, 1983, pp. 17–22, 17–21 (1983)

  9. Nield D.A.: Convection in Porous Media. 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  10. Bejan A.: Convection Heat Transfer. 2nd edn, pp. 523. Wiley, New York (1995)

    Google Scholar 

  11. Murthy P.V.S.N., Singh P.: Effect of viscous dissipation on a non-Darcy natural convection regime. Int. J. Heat Mass Transf. 40(6), 1251–1260 (1997)

    Article  MATH  Google Scholar 

  12. Magyari E., Keller B.: Effect of viscous dissipation on a quasi-parallel free convection boundary-layer flow over a vertical plate in a porous medium. Transp. Porous Media 51, 227–230 (2003)

    Article  MathSciNet  Google Scholar 

  13. Magyari E., Keller B.: Buoyancy sustained by viscous dissipation. Transp. Porous Media 53, 105–115 (2003)

    Article  MathSciNet  Google Scholar 

  14. Rees D.A.S., Magyari E., Keller B.: The development of the asymptotic viscous dissipation profile in a vertical free convective boundary layer flow in a porous medium. Transp. Porous Media 53, 347–355 (2003)

    Article  MathSciNet  Google Scholar 

  15. El-Amin M.F., El-Hakiem M.A., Mansour M.A.: Effects of viscous dissipation on a power-law fluid over plate embedded in a porous medium. Heat Mass Transf. 39, 807–813 (2003)

    Article  Google Scholar 

  16. El-Amin M.F.: Combined effect of magnetic field and viscous dissipation on a power-law fluid over plate with variable surface heat flux embedded in a porous medium. J. Magn. Magn. Mater. 261, 228–237 (2003)

    Article  Google Scholar 

  17. Hassanien I.A., Ibrahim F.S., Omer G.M.: Effect of variable permeability and viscous dissipation on a non-Darcy natural-convection regime with thermal dispersion. J. Porous Media 8(2), 237–246 (2005)

    Article  Google Scholar 

  18. Hong J.T., Tien C.L.: Analysis of thermal dispersion effect on vertical plate natural convection in porous media. Int. J. Heat Mass Transf. 30, 143–150 (1987)

    Article  MATH  Google Scholar 

  19. Lai F.C., Kulacki F.A.: Thermal dispersion effect on non-Darcy convection from horizontal surface in saturated porous media. Int. J. Heat Mass Transf. 32, 971–976 (1989)

    Article  Google Scholar 

  20. Murthy P.V.S.N., Singh P.: Thermal dispersion effects on non-Darcy natural convection with lateral mass flux. Heat Mass Transf. 33, 1–5 (1997)

    Article  Google Scholar 

  21. Mansour M.A., El-Amin M.F.: Thermal dispesion effects on non-Darcy axisymmetric free convection in a saturated porous medium with lateral mass transfer. Int. J. Appl. Mech. Eng. 4, 127–137 (1999)

    Google Scholar 

  22. El-Amin M.F.: Double dispersion effects on natural convection heat and mass transfer in non-Darcy porous medium. Appl. Math. Comp. 156, 1–17 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. El-Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, A., El-Amin, M.F., Abbas, I. et al. On the viscous dissipation modeling of thermal fluid flow in a porous medium. Arch Appl Mech 81, 1865–1876 (2011). https://doi.org/10.1007/s00419-011-0523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0523-2

Keywords

Navigation