Skip to main content
Log in

A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A finite element method is proposed that can capture arbitrary discontinuities in a two-phase medium. The discontinuity is described in an exact manner by exploiting the partition-of-unity property of finite element shape functions. The fluid flow away from the discontinuity is modelled in a standard fashion using Darcy’s relation, while at the discontinuity a discrete analogon of Darcy’s relation is proposed. The results of this finite element model are independent of the original discretisation, as is demonstrated by an example of shear banding in a biaxial, plane-strain specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Borst R. (2004). Damage, material instabilities, and failure. In: Stein E., de Borst R., Hughes T.J.R. (eds) Encyclopedia of computational mechanics, Vol 2, Chapter 10. Wiley, Chichester

    Google Scholar 

  2. Ngo D., Scordelis A.C. (1967). Finite element analysis of reinforced concrete beams. J Am Concrete Inst 64:152–163

    Google Scholar 

  3. Ingraffea A.R., Saouma V. (1985). Numerical modelling of discrete crack propagation in reinforced and plain concrete. In: Sih G.C., de Tomaso A. (eds) Fracture Mechanics of Concrete. Martinus Nijhoff Publishers, Dordrecht, pp. 171–225

    Google Scholar 

  4. Camacho G.T., Ortiz M. (1996). Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  MATH  Google Scholar 

  5. Babuska I., Melenk J.M. (1997). The partition of unity method. Int J Num Meth Eng 40:727–758

    Article  MathSciNet  MATH  Google Scholar 

  6. Belytschko T., Black T. (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Num Meth Eng 45:601–620

    Article  MathSciNet  MATH  Google Scholar 

  7. Moës N., Dolbow J., Belytschko T. (1999). A finite element method for crack growth without remeshing. Int J Num Meth Eng 46:131–150

    Article  MATH  Google Scholar 

  8. Wells G.N., Sluys L.J. (2001). Discontinuous analysis of softening solids under impact loading. Int J Num Anal Meth Geomech 25:691–709

    Article  MATH  Google Scholar 

  9. Wells G.N., Sluys L.J., de Borst R. (2002). Simulating the propagation of displacement discontinuities in a regularized strain–softening medium. Int J Num Meth Eng 53:1235–1256

    Article  Google Scholar 

  10. Wells G.N., de Borst R., Sluys L.J. (2002). A consistent geometrically non–linear approach for delamination. Int J Num Meth Eng 54:1333–1355

    Article  MATH  Google Scholar 

  11. Remmers J.J.C., de Borst R., Needleman A. (2003). A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77

    Article  MATH  Google Scholar 

  12. Samaniego E., Belytschko T. (2005). Continuum–discontinuum modelling of shear bands. Int J Num Meth Eng 62:1857–1872

    Article  MathSciNet  MATH  Google Scholar 

  13. Réthoré J., Gravouil A., Combescure A. (2005). An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Num Meth Eng 63:631–659

    Article  Google Scholar 

  14. Réthoré J., Gravouil A., Combescure A. (2005). A combined space–time extended finite element method. Int J Num Meth Eng 64:260–284

    Article  Google Scholar 

  15. Areias, P.M.A., Belytschko, T.: Twoscale shear band evolution by local partition of unity. Int J Num Meth Eng doi: 10.1002/nme.1589 (2006)

  16. Jouanna P., Abellan M.A. (1995). Generalized approach to heterogeneous media. In: Gens A., Jouanna P., Schrefler B. (eds) Modern Issues in non-saturated soils. Springer-Verlag, Wien, New York, pp. 1–128

    Google Scholar 

  17. Lewis R.W., Schrefler B.A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd Edn. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  18. Armero F., Callari C. (1999). An analysis of strong discontinuities in a saturated poro-plastic solid. Int J Num Meth Eng 46:1673–1698

    Article  MathSciNet  MATH  Google Scholar 

  19. Larsson J., Larsson R. (2000). Localization analysis of a fluidsaturated elastoplastic porous medium using regularized discontinuities. Mech Coh-frict Mat 5:565–582

    Article  Google Scholar 

  20. Feenstra P.H., de Borst R. (1996). A composite plasticity model for concrete. Int J Solids Struct 33:707–730

    Article  MATH  Google Scholar 

  21. Abellan, M.A., de Borst, R.: Wave propagation and localisation in a softening two-phase medium. Comp Meth Appl Mech Eng doi: 10.1016/j.cma.2005.05.056 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René de Borst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Borst, R., Réthoré, J. & Abellan, MA. A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium. Arch Appl Mech 75, 595–606 (2006). https://doi.org/10.1007/s00419-006-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0023-y

Keywords

Navigation