Skip to main content
Log in

Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to perform imaging of irises of different colors using spectral domain anterior segment optical coherence tomography angiography (AS-OCTA) and iris fluorescein angiography (IFA) and compare their effectiveness in examining iris vasculature.

Methods

This is a cross-sectional observational clinical study. Patients with no vascular iris alterations and different pigmentation levels were recruited. Participants were imaged using OCTA adapted with an anterior segment lens and IFA with a confocal scanning laser ophthalmoscope (cSLO) adapted with an anterior segment lens. AS-OCTA and IFA images were then compared. Two blinded readers classified iris pigmentation and compared the percentage of visible vessels between OCTA and IFA images.

Results

Twenty eyes of 10 patients with different degrees of iris pigmentation were imaged using AS-OCTA and IFA. Significantly more visible iris vessels were observed using OCTA than using FA (W = 5.22; p < 0.001). Iris pigmentation was negatively correlated to the percentage of visible vessels in both imaging methods (OCTA, rho = − 0.73, p < 0.001; IFA, rho = − 0.77, p < 0.001). Unlike FA, AS-OCTA could not detect leakage of dye, delay, or impregnation. Nystagmus and inadequate fixation along with motion artifacts resulted in lower quality images in AS-OCTA than in IFA.

Conclusions

AS-OCTA is a new imaging modality which allows analysis of iris vasculature. In both AS-OCTA and IFA, iris pigmentation caused vasculature imaging blockage, but AS-OCTA provided more detailed iris vasculature images than IFA. Additional studies including different iris pathologies are needed to determine the most optimal scanning parameters in OCTA of the anterior segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han SB, Mehta JS, Liu YC, Mohamed-Noriega K (2016) Advances and clinical applications of anterior segment imaging techniques. J Ophthalmol 2016:8529406. https://doi.org/10.1155/2016/8529406

    PubMed  PubMed Central  Google Scholar 

  2. Parodi MB, Bondel E, Saviano S, Ravalico G (1999) Iris fluorescein angiography and iris indocyanine green videoangiography in pseudoexfoliation syndrome. Eur J Ophthalmol 9:284–290

    Article  CAS  PubMed  Google Scholar 

  3. Brancato R, Bandello F, Lattanzio R (1997) Iris fluorescein angiography in clinical practice. Surv Ophthalmol 42:41–70

    Article  CAS  PubMed  Google Scholar 

  4. Maruyama Y, Kishi S, Kamei Y, Shimizu R, Kimura Y (1995) Infrared angiography of the anterior ocular segment. Surv Ophthalmol 39(Suppl 1):S40–S48

    Article  PubMed  Google Scholar 

  5. Fariza E, Ormerod LD, O'Day T, Celorio JM (1991) Practical anterior segment fluorescein angiography. Graefes Arch Clin Exp Ophthalmol 229:105–110

    Article  CAS  PubMed  Google Scholar 

  6. Gillies WE, Tangas C (1986) Fluorescein angiography of the iris in anterior segment pigment dispersal syndrome. Br J Ophthalmol 70:284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewis ML (1981) Iris fluorescein angiography. Dev Ophthalmol 2:282–285

    Article  CAS  PubMed  Google Scholar 

  8. Lopez-Saez MP, Ordoqui E, Tornero P, Baeza A, Sainza T, Zubeldia JM, Baeza ML (1998) Fluorescein-induced allergic reaction. Ann Allergy Asthma Immunol 81:428–430. https://doi.org/10.1016/S1081-1206(10)63140-7

    Article  CAS  PubMed  Google Scholar 

  9. Obana A, Miki T, Hayashi K, Takeda M, Kawamura A, Mutoh T, Harino S, Fukushima I, Komatsu H, Takaku Y et al (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118:749–753

    Article  CAS  PubMed  Google Scholar 

  10. Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98:1139–1142

    Article  CAS  PubMed  Google Scholar 

  11. Yannuzzi LA, Rohrer KT, Tindel LJ, Sobel RS, Costanza MA, Shields W, Zang E (1986) Fluorescein angiography complication survey. Ophthalmology 93:611–617

    Article  CAS  PubMed  Google Scholar 

  12. Kaeser PF, Klainguti G (2012) Anterior segment angiography in strabismus surgery. Klin Monatsbl Augenheilkd 229:362–364. https://doi.org/10.1055/s-0031-1299283

    Article  PubMed  Google Scholar 

  13. Bron AJ, Tripathi RC, Tripathi BJ (1997) Wolff's anatomy of the eye and orbit. Chapman & Hall Medical, London

    Google Scholar 

  14. Hayreh SS, Scott WE (1978) Fluorescein iris angiography. I. Normal pattern. Arch Ophthalmol 96:1383–1389

    Article  CAS  PubMed  Google Scholar 

  15. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5. https://doi.org/10.1186/s40942-015-0005-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cai Y, Alio Del Barrio JL, Wilkins MR, Ang M (2016) Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-016-3505-9

  17. Ang M, Cai Y, Tan AC (2016) Swept source optical coherence tomography angiography for contact lens-related corneal vascularization. J Ophthalmol 2016:9685297. https://doi.org/10.1155/2016/9685297

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ang M, Cai Y, Shahipasand S, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2016) En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol 100:616–621. https://doi.org/10.1136/bjophthalmol-2015-307338

    Article  PubMed  Google Scholar 

  19. Ang M, Cai Y, Mac Phee B, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Larkin DF, Wilkins MR (2016) Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2015-307706

  20. Ang M, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2015) Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 122:1740–1747. https://doi.org/10.1016/j.ophtha.2015.05.017

    Article  PubMed  Google Scholar 

  21. Skalet AH, Li Y, Lu CD, Jia Y, Lee B, Husvogt L, Maier A, Fujimoto JG, Thomas CR, Jr., Huang D (2017) Optical coherence tomography angiography characteristics of iris melanocytic tumors. Ophthalmology 124: 197–204 DOI https://doi.org/10.1016/j.ophtha.2016.10.003

  22. Chien JL, Sioufi K, Ferenczy S, Say EAT, Shields CL (2017) Optical coherence tomography angiography features of iris racemose hemangioma in 4 cases. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2017.3390

  23. Allegrini D, Montesano G, Pece A (2016) Optical coherence tomography angiography in a normal iris. Ophthalmic Surg Lasers Imaging Retina 47:1138–1139. https://doi.org/10.3928/23258160-20161130-08

    Article  PubMed  Google Scholar 

  24. Roberts PK, Goldstein DA, Fawzi AA (2017) Anterior segment optical coherence tomography angiography for identification of iris vasculature and staging of iris neovascularization: a pilot study. Curr Eye Res:1–7. https://doi.org/10.1080/02713683.2017.1293113

  25. Mackey DA, Wilkinson CH, Kearns LS, Hewitt AW (2011) Classification of iris colour: review and refinement of a classification schema. Clin Exp Ophthalmol 39:462–471. https://doi.org/10.1111/j.1442-9071.2010.02487.x

    Article  PubMed  Google Scholar 

  26. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725. https://doi.org/10.1364/OE.20.004710

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allegrini D, Montesano G, Pece A (2016) Optical coherence tomography angiography of iris nevus: a case report. Case Rep Ophthalmol 7:172–178. https://doi.org/10.1159/000450572

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carrasco-Zevallos OM, Nankivil D, Viehland C, Keller B, Izatt JA (2016) Pupil tracking for real-time motion corrected anterior segment optical coherence tomography. PLoS One 11:e0162015. https://doi.org/10.1371/journal.pone.0162015

    Article  PubMed  PubMed Central  Google Scholar 

  29. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–2180. https://doi.org/10.1097/IAE.0000000000000765

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. José Luiz Piaba, photographer of the Department of Ophthalmology of the Federal University of Sao Paulo, Paulista School of Medicine, for capturing biomicroscopy photographs, and Institute of Vision (IPEPO) for providing the equipment RTVue XR OCT Avanti and allowing to examine the subjects at their center.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zett.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Brazilian Health Insurance Portability and Accountability Act of 1996 and approved by the Research Ethics Committee of the Federal University of São Paulo/Hospital São Paulo, process n° 1.955.380) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zett, C., Stina, D.M.R., Kato, R.T. et al. Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis. Graefes Arch Clin Exp Ophthalmol 256, 683–691 (2018). https://doi.org/10.1007/s00417-018-3935-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-3935-7

Keywords

Navigation