Skip to main content

Advertisement

Log in

Development of surgical techniques for implantation of a wireless intraocular epiretinal retina implant in Göttingen minipigs

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to develop surgical methods for the implantation of a wireless intraocular epiretinal retina implant (EPI RET3) in Göttingen minipigs. This animal model resembles closely the anatomical conditions in humans, and is thus suitable for investigating the EPI RET3 implant as designed for the application in humans.

Methods

Phacoemulsification and vitrectomy was performed on the right eye of 16 Göttingen minipigs under general anesthesia. The implants, consisting of a receiver module and an electrode array connected via a flexible micro cable, were inserted through a corneoscleral incision. The receiver module was placed into the sulcus ciliaris and the electrode array was fixed onto the retina temporal to the optic disc with a retinal tack. Minipigs were monitored for intra- and postoperative ocular complications. Follow-up times were 3 (seven minipigs) and 12 weeks (nine minipigs).

Results

Implantation was successfully performed in all 16 minipigs. The complete implantation surgery required on average 2 hours. Intraoperative findings were a minor hemorrhage of the anterior chamber angle in two eyes, one minor iris hemorrhage, and one minor punctiform retinal hemorrhage, which were all reversible. Postoperatively, the corneoscleral incision showed good wound healing in all eyes. Intraocular reactions included mainly fibrin exudation (six eyes) and formation of iris synechiae with the receiver module of the implants (three eyes).

Conclusions

The performed implantation procedures of the intraocular EPI RET3 implant are feasible and reproducible within an acceptable surgical time. The development of inflammatory responses is a specific predisposition of the minipig following any intraocular intervention; nevertheless, the surgical techniques should be further improved to minimize procedure-related reactions. Our results provide a step towards the application of the EPI RET3 system in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daiger SP, Bowne SJ, Sullivan LS (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125:151–158

    Article  PubMed  CAS  Google Scholar 

  2. Aldahmesh MA, Safieh LA, Alkuraya H, Al-Rajhi A, Shamseldin H, Hashem M, Alzahrani F, Khan AO, Alqahtani F, Rahbeeni Z, Alowain M, Khalak H, Al-Hazzaa S, Meyer BF, Alkuraya FS (2009) Molecular characterization of retinitis pigmentosa in Saudi Arabia. Mol Vis 15:2464–2469

    PubMed  CAS  Google Scholar 

  3. Margolis DJ, Detwiler PB (2011) Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol. doi:10.1155/2011/507037

  4. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  5. Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115:511–515

    Article  PubMed  CAS  Google Scholar 

  6. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44:5355–5361

    Article  PubMed  Google Scholar 

  7. Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal–transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245:1411–1419

    Article  PubMed  Google Scholar 

  8. Nanduri D, Humayun MS, Greenberg RJ, McMahon MJ, Weiland JD (2008) Retinal prosthesis phosphene shape analysis. Conf Proc IEEE Eng Med Biol Soc 2008:1785–1788

    PubMed  CAS  Google Scholar 

  9. Walter P, Mokwa W (2005) Epiretinal visual prosthesis. Ophthalmologe 102:933–940

    Article  PubMed  CAS  Google Scholar 

  10. Güven D, Weiland JD, Fujii G, Mech BV, Mahadevappa M, Greenberg R, Roizenblatt R, Qiu G, Labree L, Wang X, Hinton D, Humayun MS (2005) Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng 2:65–73

    Article  Google Scholar 

  11. Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol 143:820–827

    Article  PubMed  Google Scholar 

  12. Humayun MS, Dorn JD, Ahuja AK, Caspi A, Filley E, Dagnelie G, Salzmann J, Santos A, Duncan J, daCruz L, Mohand-Said S, Eliott D, McMahon MJ, Greenberg RJ (2009) Preliminary 6-month results from the ARGUS II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc 2009:4566–4568

    PubMed  Google Scholar 

  13. Caspi A, Dorn JD, McClure KH, Humayun MS, Greenberg RJ, McMahon MJ (2009) Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch Ophthalmol 127:398–401

    Article  PubMed  Google Scholar 

  14. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469

    Article  PubMed  Google Scholar 

  15. Zrenner E, Gekeler F, Gabel VP, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelzle M, Stett A, Troeger B, Weiss S (2001) Subretinales Mikrophotodioden-Array als Ersatz für degenerierte Photorezeptoren? Ophthalmologe 98:357–363

    Article  PubMed  CAS  Google Scholar 

  16. Zrenner E, Wilke R, Zabel T, Sachs H, Bartz-Schmidt K, Gekeler F, Wilhelm B, Greppmaier U, Stett A, SUBRET Study Group (2007) Psychometric analysis of visual sensations mediated by subretinal microelectrode arrays implanted into blind retinitis pigmentosa patients. Invest Ophthalmol Vis Sci 48:E-abstract 659

    Google Scholar 

  17. Sakaguchi H, Fujikado T, Fang X, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S, Ohji M, Yagi T, Tano Y (2004) Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 48:256–261

    Article  PubMed  Google Scholar 

  18. Chowdhury V, Morley JW, Coroneo MT (2005) Feasibility of extraocular stimulation for a retinal prosthesis. Can J Ophthalmol 40:563–572

    PubMed  Google Scholar 

  19. Richard G, Hornig R, Keserü M, Feucht M (2007) Chronic epiretinal chip implant in blind patients with retinitis pigmentosa: long term clinical results. Invest Ophthalmol Vis Sci 48:E-Abstract 666

    Google Scholar 

  20. Gekeler F, Szurman P, Grisanti S, Weiler U, Claus R, Greiner T-O, Völker M, Kohler K, Zrenner E, Bartz-Schmidt KU (2007) Compound subretinal prosthesis with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 245:230–241

    Article  PubMed  Google Scholar 

  21. Koch C, Goertz M, Mokwa W, Trieu HK, EPI-RET-3 Group (2008) The EPI-RET-3 wireless intraocular retina implant system: technical features — fabrication and assembly techniques. Invest Ophthalmol Vis Sci 49:E-Abstract 1780

    Google Scholar 

  22. Krisch I, Goertz M, Hosticka B, EPIRET 3 Group (2008) A wireless epiretinal prosthesis: the technical features - communication, power management and signal processing. Invest Ophthalmol Vis Sci 49:E-Abstract 3026

    Google Scholar 

  23. Mokwa W, Goertz M, Koch C, Krisch I, Trieu HK, Walter P (2008) Intraocular epiretinal prosthesis to restore vision in blind humans. Conf Proc IEEE Eng Med Biol Soc: 5790–5793

  24. Laube T, Schanze T, Brockmann C, Bolle I, Stieglitz T, Bornfeld N (2003) Chronically implanted epidural electrodes in Göttinger minipigs allow function tests of epiretinal implants. Graefes Arch Clin Exp Ophthalmol 241:1013–1019

    Article  PubMed  Google Scholar 

  25. Laube T, Akguel H, Schanze T, Goertz M, Bolle I, Brockmann C, Bornfeld N, EPI RET Group (2004) First time successful epiretinal stimulation with active wireless retinal implants in Göttinger minipigs. Invest Ophthalmol Vis Sci 45:E-Abstract 4188

    Google Scholar 

  26. Akguel H, Laube T, Brockmann C, Bolle I, Bornfeld N, Schilling H, Luedtke-Handjery HC (2004) Verification of threshold parameters and tissue compatibility of IrOx film-electrodes on epiretinal electrical stimulation of retina in mini pigs. Invest Ophthalmol Vis Sci 45:E-Abstract 4184

    Google Scholar 

  27. Prince JH, Diesem CD, Eglitis I, Ruskell GL (1960) Anatomy and histology of the eye and orbit in domestic animals. Charles C Thomas, Springfield

    Google Scholar 

  28. Bertschinger DR, Beknazar E, Simonutti M, Safran AB, Sahel JA, Rosolen SG, Picaud S, Salzmann J (2008) A review of in vivo animal studies in retinal prosthesis research. Graefes Arch Clin Exp Ophthalmol 246:1505–1517

    Article  PubMed  Google Scholar 

  29. Klauke S, Goertz M, Rein S, Hoehl D, Thomas U, Eckhorn R, Bremmer F, Wachtler T (2011) Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest Ophthalmol Vis Sci 52:449–455

    Article  PubMed  Google Scholar 

  30. Schwarz M, Ewe L, Hausschild R, Hosticka BJ, Huppertz J, Kolnsberg S, Mokwa W, Trieu HK (2000) Single chip CMOS imagers and flexible microelectronic stimulators for a retina implant system. Sens Actuators A83:40–46

    Article  CAS  Google Scholar 

  31. Koch C, Fassbender H, Nolten U, Görtz M, Mokwa W (2008) Fabrication and assembly techniques for a 3rd generation wireless epiretinal prosthesis. In: Schnakenberg U (ed) Proceedings of the 19th MicroMechanics Europe Workshop 2008, Aachen, Germany. VDI/VDE IT, Berlin, pp 365–368, ISBN: 978-3-00-025529-8

    Google Scholar 

  32. Slavcheva E, Vitushinski R, Mokwa W, Schnakenberg U (2004) Sputtered iridium oxide films as charge injection material for functional electrostimulation. J Electrochem Soc 151:E226–E237

    Article  CAS  Google Scholar 

  33. Niessing M, Messner A, Coenen PW, Röthgen H, Hoehl D, Thomas U, EPIRET 3 Group (2008) The Epiret3 wireless intraocular retina implant system: retina prosthesis production techniques. Invest Ophthalmol Vis Sci 49:E-Abstract 1782

    Google Scholar 

  34. Walter P, Kisvárday ZF, Goertz M, Alteheld N, Roessler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46:1780–1785

    Article  PubMed  Google Scholar 

  35. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238:315–318

    Article  PubMed  CAS  Google Scholar 

  36. Duncker GIW, Rochels R (1996) Delayed suprachoroidal hemorrhage after penetrating keratoplasty. Int Ophthalmol 19:173–176

    Article  CAS  Google Scholar 

  37. Rothman JS, Abad JC, Kornmehl EW (2009) Intraoperative complications of penetrating keratoplasty. In: Brightbill FS (ed) Corneal surgery — theory, technique and tissue. Mosby Elsevier, St. Louis, p 454

    Google Scholar 

  38. Alio JL, Rodriguez Rats JL, Galal A (2005) Microincision cataract surgery. In: Vajpayee RB, Sharma N, Pandey SK, Titiyal JS (eds) Phacoemulsification surgery. Jaypee Brothers Medical Publishers Ltd, New Delhi, p 162

    Google Scholar 

  39. Savini G, Zanini M, Buratto L (2003) Incisions. In: Buratto L, Werner L, Zanini M, Apple D (eds) Phacoemulsification principles and techniques. Slack Inc, Thorofare NJ, pp 69–79

    Google Scholar 

  40. Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240:947–954

    Article  PubMed  Google Scholar 

  41. Laube T, Bornfeld N (1999) Evaluation of stability and position of epi-retinal implants with the RetCam 120™ digital fundus camera. Invest Ophthalmol Vis Sci 40:E-Abstract 3888

    Google Scholar 

  42. Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552

    Article  PubMed  CAS  Google Scholar 

  43. Majji AB, Humayun MS, Weiland JD, Suzuki S, D'Anna SA, de Juan E Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081

    PubMed  CAS  Google Scholar 

  44. Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Koch C, Krisch I, Sellhaus B, Trieu HK, Weis J, Bornfeld N, Röthgen H, Messner A, Mokwa W, Walter P (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50:3003–3008

    Article  PubMed  Google Scholar 

  45. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E Jr (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581

    Article  PubMed  Google Scholar 

  46. Humayun MS (2009) Preliminary results from the Argus II feasibility study: a 60 electrode epiretinal prosthesis. Invest Ophthalmol Vis Sci 50:E-Abstract 4744

    Google Scholar 

  47. Tunc M, Humayun M, Xuanhong C, Ratner BD (2008) A reversible thermosensitive adhesive for retinal implants - in vivo experience with plasma-deposited poly(N-isopropyl acrylamide). Retina 28:1338–1343

    Article  PubMed  Google Scholar 

  48. Besch D, Sachs H, Szurman P, Gülicher D, Wilke R, Reinert S, Zrenner E, Bartz-Schmidt KU, Gekeler F (2008) Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients. Br J Ophthalmol 92:1361–1368

    Article  PubMed  CAS  Google Scholar 

  49. Lucke JN, Hall GM, Lister D (1977) Anaesthesia of pigs sensitive to malignant hyperthermia. Vet Record 100:45–48

    Article  CAS  Google Scholar 

  50. Lorkin PA, Lehmann H (1983) Investigation of malignant hyperthermia: analysis of skeletal muscle proteins from normal and halothane sensitive pigs by two dimensional gel electrophoresis. J Med Genetics 20:18–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all co-workers of the EPI RET work group. This study was supported by grants from the Federal Ministry of Education and Research (01KP0402, 01KP0403). Shirley Heinen is acknowledged for linguistic improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Laube.

Additional information

The authors have full control of all primary data, and they agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laube, T., Brockmann, C., Roessler, G. et al. Development of surgical techniques for implantation of a wireless intraocular epiretinal retina implant in Göttingen minipigs. Graefes Arch Clin Exp Ophthalmol 250, 51–59 (2012). https://doi.org/10.1007/s00417-011-1756-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1756-z

Keywords

Navigation