Skip to main content
Log in

The impact of metformin use on the outcomes of relapse-remitting multiple sclerosis patients receiving interferon beta 1a: an exploratory prospective phase II open-label randomized controlled trial

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

A Correction to this article was published on 18 March 2024

This article has been updated

Abstract

Background

Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disorder. Elevated levels of pro-inflammatory mediators and some oxidative stress parameters can accelerate the demyelination process. We aimed to investigate the efficacy and safety of metformin as an adjuvant therapy to interferon beta 1a (IFNβ-1a) in relapsing–remitting multiple sclerosis (RRMS) patients.

Method

Eighty RRMS patients were equally divided into 2 groups: the intervention group receiving IFNβ-1a plus 2 gm of metformin once daily and the control group receiving IFNβ-1a alone. Interleukin 17 (IL17), interleukin 22 (IL22), malondialdehyde (MDA), T2 lesions in magnetic resonance imaging (MRI) and expanded disability status scale (EDSS) were assessed at the baseline and then after 6 months.

Results

At baseline, there were no statistically significant differences between the two groups (p > 0.05). After 6 months, the change in the median (interquartile range) of the results for both the intervention and control group were; IL17 (− 1.39 (4.19) vs − 0.93 (5.48), p = 0.48), IL22 (− 0.14 (0.48) vs − 0.09 (0.6), p = 0.53), and EDSS (0 vs 0, p = 1), respectively. The mean (standard deviation) change in MDA for the intervention and control group was − 0.93 (2.2) vs − 0.5 (2.53), p = 0.038, respectively. For MRI results, 21 patients had stationary and regressive course and 1 patient had a progressive course in the intervention arm vs 12 patients had stationary and regressive course and 4 had a progressive course in the control arm, p = 0.14.

Conclusion

Adding metformin to IFNβ-1a demonstrated a potential effect on an oxidative stress marker (MDA). However, there is no statistically significant effect on immunological, MRI and clinical outcomes. We recommend larger scale studies to confirm or negate these findings.

Trial registration

ClinicalTrials.gov number: NCT05298670, 28/3/2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Chaudhuri A (2013) Multiple sclerosis is primarily a neurodegenerative disease. J Neural Transm (Vienna) 120:1463–1466. https://doi.org/10.1007/s00702-013-1080-3

    Article  CAS  PubMed  Google Scholar 

  2. Tillery EE, Clements JN, Howard Z (2017) What’s new in multiple sclerosis? Ment Health Clin 7(5):213–220

    Article  PubMed  Google Scholar 

  3. Adamczyk B, Adamczyk-Sowa M (2016) New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. https://doi.org/10.1155/2016/1973834

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. https://doi.org/10.1155/2013/708659

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sallusto F (2016) Heterogeneity of human CD4+ T cells against microbes. Annu Rev Immunol 34:317–334. https://doi.org/10.1146/annurev-immunol-032414-112056

    Article  CAS  PubMed  Google Scholar 

  6. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F (2014) T helper cells plasticity in inflammation. Cytometry A 85(1):36–42. https://doi.org/10.1002/cyto.a.22348

    Article  CAS  PubMed  Google Scholar 

  7. Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21(4):467–476. https://doi.org/10.1016/j.immuni.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  8. Wing AC, Hygino J, Ferreira TB, Kasahara TM, Barros PO, Sacramento PM, Andrade RM, CamargoS RF, Alves-Leon SV, Vasconcelos CC, Alvarenga R, Bento CA (2016) Interleukin-17-and interleukin-22-secreting myelin-specific CD 4+ T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients. Immunology 147(2):212–220. https://doi.org/10.1111/imm.12552

    Article  CAS  PubMed  Google Scholar 

  9. Kuntzel T, Bagnard D (2022) Manipulating Macrophage/Microglia Polarization to Treat Glioblastoma or Multiple Sclerosis. Pharmaceutics 14(2):344. https://doi.org/10.3390/pharmaceutics14020344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mao P, Reddy PH (2010) Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta Mol Basis Dis 1802(1):66–79

    Article  CAS  Google Scholar 

  11. Largani SHH, Borhani-Haghighi M, Pasbakhsh P, Mahabadi VP, Nekoonam S, Shiri E, Kashani IR, Zendehdel A (2019) Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J Mol Histol 50:263–271. https://doi.org/10.1007/s10735-019-09824-0

    Article  CAS  PubMed  Google Scholar 

  12. Addabbo F, Montagnani M, Goligorsky MS (2009) Mitochondria and reactive oxygen species. Hypertension 53(6):885–892

    Article  CAS  PubMed  Google Scholar 

  13. Pardo G, Jones DE (2017) The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations. J Neurol 264(12):2351–2374. https://doi.org/10.1007/s00415-017-8594-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Filipi M, Jack S (2020) Interferons in the treatment of multiple Sclerosis: A clinical efficacy, safety, and tolerability update. Int J MS Care 22(4):165–172. https://doi.org/10.7224/1537-2073.2018-063

    Article  PubMed  Google Scholar 

  15. Li H, Hu F, Zhang Y, Li K (2020) Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing–remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol 267(12):3489–3498. https://doi.org/10.1007/s00415-019-09395-w

    Article  PubMed  Google Scholar 

  16. Sattarnezhad N, Healy BC, Baharnoori M, Diaz-Cruz C, Stankiewicz J, Weiner HL, Chitnis T (2022) Comparison of dimethyl fumarate and interferon outcomes in an MS cohort. BMC Neurol 22(1):252. https://doi.org/10.1186/s12883-022-02761-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vermersch P, Scaramozza M, Levin S, Alroughani R, Deiva K, Pozzilli C, Lyons J, Mokliatchouk O, Pultz J, N’Dure F, Liu S, Badwan R, Branco F, Hood-Humphrey V, Franchimont N, Hanna J, Maghzi AH (2022) Effect of dimethyl fumarate vs interferon β-1a in patients with pediatric-onset multiple sclerosis: the CONNECT randomized clinical trial. JAMA Netw Open 5(9):e2230439. https://doi.org/10.1001/jamanetworkopen.2022.30439

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ning P, Luo A, Mu X, Xu Y, Li T (2022) Exploring the dual character of metformin in Alzheimer’s disease. Neuropharmacology 207:108966. https://doi.org/10.1016/j.neuropharm.2022.108966

    Article  CAS  PubMed  Google Scholar 

  19. Feng YY, Wang Z, Pang H (2023) Role of metformin in inflammation. Mol Biol Rep 50(1):789–798. https://doi.org/10.1007/s11033-022-07954-5

    Article  CAS  PubMed  Google Scholar 

  20. Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A (2022) Metformin intervention—a panacea for cancer treatment? Cancers 14(5):1336

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khezri MR, Yousefi K, Mahboubi N, Hodaei D, Ghasemnejad-Berenji M (2022) Metformin in Alzheimer’s disease: An overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 197:114945. https://doi.org/10.1016/j.bcp.2022.114945

    Article  CAS  PubMed  Google Scholar 

  22. Tawfik TZ, Gad AH, Mehaney DA, El Nahrery EE, Shehata HS, Hashem H, Abdel Ghaffar NF, Shalaby N (2016) Interleukins 17 and 10 in a sample of Egyptian relapsing remitting multiple sclerosis patients. J Neurol Sci 369:36–38. https://doi.org/10.1016/j.jns.2016.07.034

    Article  CAS  PubMed  Google Scholar 

  23. van der Vuurst de Vries RM, Mescheriakova JY, Wong YYM, Runia TF, Jafari N, Samijn JP, de Beukelaar JWK, Wokke BHA, Siepman TAM, Hintzen RQ (2018) Application of the 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome. JAMA Neurol 75(11): 1392-1398. 1001/jamaneurol.2018.2160

  24. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452. https://doi.org/10.1212/wnl.33.11.1444

    Article  CAS  PubMed  Google Scholar 

  25. Cunniffe N (2021) Promoting and measuring remyelination and neuroprotection in clinical trials of people with multiple sclerosis. Dissertation, University of Cambridge. https://doi.org/10.17863/CAM.77136

  26. Ovcharova E, Danovska M, Marinova D, Pendicheva-Duhlenska D, Tonchev P, Atanasova M, Ruseva A, Shepherd N, Tzveova R (2022) Adapted Mediterranean Diet Impact on the Symptoms of Chronic Fatigue, Serum Levels of Omega-3 Polyunsaturated Fatty Acids (PUFAs) and Interleukin 17 (IL-17) in Patients with Relapsing-Remitting Multiple Sclerosis undergoing Disease-Modifying Therapy: A Pilot Study. J IMAB 28(1):4297–4304. https://doi.org/10.5272/jimab.2022281.4297

    Article  Google Scholar 

  27. Noroozi S, Arababadi MK, Meimand HAE, Asadikaram G (2017) The effect of IFN-β 1a on biochemical factors in multiple sclerosis patients. Iran Red Crescent Med J 19(8):e41032

    Google Scholar 

  28. Green AE (2013) AMP-activated protein kinase (AMPK) activation for the treatment of mitochondrial disease. Dissertation, York University.

  29. Hagen J, Zimmerman R, Goetz C, Bonnevier J, Houchins JP, Reagan K, Kalyuzhny AE (2015) Comparative multi-donor study of IFNγ secretion and expression by human PBMCs using ELISPOT side-by-side with ELISA and flow cytometry assays. Cells 4(1):84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ji N, Forsthuber TG (2016) ELISPOT techniques. Methods Mol Biol 1304:63–71. https://doi.org/10.1007/7651_2014_111

    Article  PubMed  Google Scholar 

  31. Abdel-Dayem MA, Shaker ME, Gameil NM (2019) Impact of interferon β-1b, interferon β-1a and fingolimod therapies on serum interleukins-22, 32α and 34 concentrations in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 337:577062. https://doi.org/10.1016/j.jneuroim.2019.577062

    Article  CAS  PubMed  Google Scholar 

  32. Balasa R, Maier S, Voidazan S, Hutanu A, Bajko Z, Motataianu A, Tilea B, Tiu C (2017) Assessment of Interleukin-17A, Interleukin-10 and Transforming Growth Factor-Beta1 Serum Titers in Relapsing Remitting Multiple Sclerosis Patients Treated with Avonex, Possible Biomarkers for Treatment Response. CNS Neurol Disord Drug Targets 16(1):93–101. https://doi.org/10.2174/1871527315666160615110739

    Article  CAS  PubMed  Google Scholar 

  33. Toghianifar N, Ashtari F, Zarkesh-Esfahani SH, Mansourian M (2015) Effect of high dose vitamin D intake on interleukin-17 levels in multiple sclerosis: a randomized, double-blind, placebo-controlled clinical trial. J Neuroimmunol 285:125–128. https://doi.org/10.1016/j.jneuroim.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  34. Bălaşa R, Bajko Z, Huţanu A (2013) Serum levels of IL-17A in patients with relapsing–remitting multiple sclerosis treated with interferon-β. Mult Scler 19(7):885–890. https://doi.org/10.1177/1352458512468497

    Article  CAS  PubMed  Google Scholar 

  35. Kim C, Golden SH, Mather KJ, Laughlin GA, Kong S, Nan B, Barrett-Connor E, Randolph JF (2012) Racial/ethnic differences in sex hormone levels among postmenopausal women in the diabetes prevention program. J Clin Endocrinol Metab 97(11):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bonnet F, Scheen A (2017) Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab 19(4):473–481. https://doi.org/10.1111/dom.12854

    Article  CAS  PubMed  Google Scholar 

  37. Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I (2013) AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 183(2):526–541. https://doi.org/10.1016/j.ajpath.2013.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paintlia AS, Mohan S, Singh I (2013) Combinatorial effect of metformin and lovastatin impedes T-cell autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis. J Clin Cell Immunol. https://doi.org/10.4172/2155-9899.1000149

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67. https://doi.org/10.1016/j.jneuroim.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  40. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182(12):8005–8014

    Article  CAS  PubMed  Google Scholar 

  41. Houshmand F, Barati M, Golab F, Ramezani-Sefidar S, Tanbakooie S, Tabatabaei M, Amiri M, Sanadgol N (2019) Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. Daru 27(2):583–592. https://doi.org/10.1007/s40199-019-00286-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F (2020) Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 72(3):641–658. https://doi.org/10.1007/s43440-019-00019-8

    Article  CAS  PubMed  Google Scholar 

  43. Abdi M, Pasbakhsh P, Shabani M, Nekoonam S, Sadeghi A, Fathi F, Abouzaripour M, Mohamed W, Zibara K, Kashani IR, Zendedel A (2021) Metformin therapy attenuates pro-inflammatory microglia by inhibiting NF-κB in cuprizone demyelinating mouse model of multiple sclerosis. Neurotox Res 39(6):1732–1746. https://doi.org/10.1007/s12640-021-00417-y

    Article  CAS  PubMed  Google Scholar 

  44. Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR, Chalut K, van Wijngaarden P, Franklin RJM (2019) Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25(4):473-485e8. https://doi.org/10.1016/j.stem.2019.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Negrotto L, Farez MF, Correale J (2016) Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol 73(5):520–528. https://doi.org/10.1001/jamaneurol.2015.4807

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the medical staff at Nasser Institute Hospital and Fatemic Cairo Hospital for their exemplary care, enthusiastic participation, and valuable support.

Author information

Authors and Affiliations

Authors

Contributions

MY-A carried out devising the main conceptual idea, study design, obtaining approval from the Scientific Research Ethics Committee at the Egyptian Ministry of Health, sample and data collection, ELISA and Spectrophotometer techniques, statistical analysis, and writing the manuscript. MH was the neurologist who provided crucial clinical data including EDSS and MRI. HM-E revised the procedures of practical techniques and commented on the manuscript. MH-S revised the study design, statistical analysis, and commented on the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Mohamed H. Solayman.

Ethics declarations

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The Research Ethics Committee at the Egyptian Ministry of Health approved and registered the study protocol (Com.No/Dec.No: 8-2022/5). This study was conducted according to the 1964 Declaration of Helsinki and its later amendments. All patients were educated about the study protocol and were required to sign a written informed consent before participation without any obligation to complete the study. The study was registered at “Clinical-Trials.gov” with identifier number: NCT05298670.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelgaied, M.Y., Rashad, M.H., El-Tayebi, H.M. et al. The impact of metformin use on the outcomes of relapse-remitting multiple sclerosis patients receiving interferon beta 1a: an exploratory prospective phase II open-label randomized controlled trial. J Neurol 271, 1124–1132 (2024). https://doi.org/10.1007/s00415-023-12113-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12113-2

Keywords

Navigation