Skip to main content

Advertisement

Log in

Disease-modifying therapies used to treat multiple sclerosis and the gut microbiome: a systematic review

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

The gut microbiome may play a role in multiple sclerosis (MS). However, its relationship with the disease-modifying therapies (DMTs) remains unclear. We systematically reviewed the literature to examine the relationship between DMTs and the gut microbiota among persons with MS (pwMS).

Methods

MEDLINE, EMBASE, Web of Science, and Scopus were searched (01/2007-09/2022) for studies evaluating potential gut microbiota differences in diversity, taxonomic relative abundances, and functional capacity between DMT-exposed/unexposed pwMS or before/after DMT initiation. All US FDA-approved MS DMTs (1993-09/2022) and rituximab were included.

Results

Of the 410 studies, 11 were included, totalling 1243 pwMS. Of these, 821 were DMT exposed and 473 unexposed, including 51 assessed before/after DMT initiation. DMT use duration ranged from 14 days to > 6 months. No study found a difference in gut microbiota alpha-diversity between DMT exposed/unexposed (p > 0.05). One study observed a difference in beta-diversity between interferon-beta users/DMT non-users (weighted UniFrac, p = 0.006). All studies examined taxa-level differences, but most (6) combined different DMTs. Two or more studies reported eight genera (Actinomyces, Bacteroides, Clostridium sensu stricto 1, Haemophilus, Megasphaera, Pseudomonas, Ruminiclostridium 5, Turicibacter) and one species (Ruthenibacterium lactatiformans) differing in the same direction between DMT exposed/unexposed. DMT users had lower relative abundances of carbohydrate degradation and reductive tricarboxylic acid cycle I pathway than non-users (p < 0.05), but findings could not be attributed to a specific DMT.

Discussion

While DMT use (versus no use) was not associated with gut microbiota diversity differences, taxa-level differences were observed. Further work is warranted, as most studies were cross-sectional, few examined functionality, and DMTs were combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All reported data are based on already published work; no novel data were reported.

References

  1. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. https://doi.org/10.1016/j.cell.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191. https://doi.org/10.3402/mehd.v26.26191

    Article  PubMed  Google Scholar 

  3. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  4. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81(3):369–382. https://doi.org/10.1002/ana.24901

    Article  PubMed  Google Scholar 

  5. Mirza A, Forbes JD, Zhu F, Bernstein CN, Van Domselaar G, Graham M et al (2020) The multiple sclerosis gut microbiota: a systematic review. Mult Scler Relat Disord 37:101427. https://doi.org/10.1016/j.msard.2019.101427

    Article  PubMed  Google Scholar 

  6. Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS (2022) Therapeutic advances in multiple sclerosis. Front Neurol. https://doi.org/10.3389/fneur.2022.824926

    Article  PubMed  PubMed Central  Google Scholar 

  7. iMSMS Consortium (2022) Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell 185(19):3467-86e16. https://doi.org/10.1016/j.cell.2022.08.021

    Article  CAS  PubMed Central  Google Scholar 

  8. Mirza AI, Zhu F, Knox N, Forbes JD, Van Domselaar G, Bernstein CN et al (2022) Metagenomic Analysis of the Pediatric-Onset Multiple Sclerosis Gut Microbiome. Neurology 98(10):e1050–e1063. https://doi.org/10.1212/WNL.0000000000013245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Troci A, Zimmermann O, Esser D, Krampitz P, May S, Franke A et al (2022) B-cell-depletion reverses dysbiosis of the microbiome in multiple sclerosis patients. Sci Rep 12(1):3728. https://doi.org/10.1038/s41598-022-07336-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castillo-Alvarez F, Perez-Matute P, Oteo JA, Marzo-Sola ME (2021) The influence of interferon beta-1b on gut microbiota composition in patients with multiple sclerosis. Neurologia (Engl Ed) 36(7):495–503. https://doi.org/10.1016/j.nrleng.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  11. Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V et al (2021) Gut Microbiome in Progressive Multiple Sclerosis. Ann Neurol 89(6):1195–1211. https://doi.org/10.1002/ana.26084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozhieva M, Naumova N, Alikina T, Boyko A, Vlassov V, Kabilov MR (2021) The Core of Gut Life: Firmicutes Profile in Patients with Relapsing-Remitting Multiple Sclerosis. Life (Basel). https://doi.org/10.3390/life11010055

    Article  PubMed  Google Scholar 

  13. Tremlett H, Zhu F, Arnold D, Bar-Or A, Bernstein CN, Bonner C et al (2021) The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol 8(12):2252–2269. https://doi.org/10.1002/acn3.51476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Katz Sand I, Zhu Y, Ntranos A, Clemente JC, Cekanaviciute E, Brandstadter R et al (2019) Disease-modifying therapies alter gut microbial composition in MS. Neurol Neuroimmunol Neuroinflamm 6(1):e517. https://doi.org/10.1212/NXI.0000000000000517

    Article  PubMed  Google Scholar 

  15. Storm-Larsen C, Myhr KM, Farbu E, Midgard R, Nyquist K, Broch L et al (2019) Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis—a pilot trial. Mult Scler J Exp Transl Clin 5(4):2055217319888767. https://doi.org/10.1177/2055217319888767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015. https://doi.org/10.1038/ncomms12015

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J et al (2015) Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 63(5):729–734. https://doi.org/10.1097/JIM.0000000000000192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flanagin A, Frey T, Christiansen SL, Committee AMAMoS (2021) Updated Guidance on the Reporting of Race and Ethnicity in Medical and Science Journals. JAMA 326(7):621–627. https://doi.org/10.1001/jama.2021.13304

    Article  PubMed  Google Scholar 

  19. Strom BL (2007) Pharmacoepidemiology, 4th edn. John Wiley & Sons, Chichester, pp 791–809

    Google Scholar 

  20. Finkelsztejn A (2014) Multiple sclerosis: overview of disease-modifying agents. Perspect Medicin Chem 6:65–72. https://doi.org/10.4137/PMC.S13213

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wijnands JMA, Zhu F, Kingwell E, Fisk JD, Evans C, Marrie RA et al (2018) Disease-modifying drugs for multiple sclerosis and infection risk: a cohort study. J Neurol Neurosurg Psychiatry 89(10):1050–1056. https://doi.org/10.1136/jnnp-2017-317493

    Article  PubMed  Google Scholar 

  22. Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee YV (2018) The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 141(7):1900–1916. https://doi.org/10.1093/brain/awy131

    Article  PubMed  PubMed Central  Google Scholar 

  23. Erturk-Hasdemir D, Ochoa-Reparaz J, Kasper DL, Kasper LH (2021) Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis’ Polysaccharide A. Front Immunol 12:662807. https://doi.org/10.3389/fimmu.2021.662807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plaza-Diaz J, Manzano M, Ruiz-Ojeda FJ, Giron MD, Salto R, Lopez-Pedrosa JM et al (2022) Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Front Nutr 9:992682. https://doi.org/10.3389/fnut.2022.992682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  26. Frankel AE, Deshmukh S, Reddy A, Lightcap J, Hayes M, McClellan S et al (2019) Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integr Cancer Ther 18:1534735419846379. https://doi.org/10.1177/1534735419846379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ordonez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D (2023) Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph20054624

    Article  PubMed  PubMed Central  Google Scholar 

  28. US Food and Drug Administration. (2022). OCREVUS® (ocrelizumab) injection, for intravenous use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761053s029s030lbl.pdf Accessed 31Mar 2023

  29. Pilotto S, Zoledziewska M, Fenu G, Cocco E, Lorefice L (2023) Disease-modifying therapy for multiple sclerosis: Implications for gut microbiota. Mult Scler Relat Disord 73:104671. https://doi.org/10.1016/j.msard.2023.104671

    Article  CAS  PubMed  Google Scholar 

  30. Diebold M, Meola M, Purushothaman S, Siewert LK, Possnecker E, Roloff T et al (2022) Gut microbiota composition as a candidate risk factor for dimethyl fumarate-induced lymphopenia in multiple sclerosis. Gut Microbes 14(1):2147055. https://doi.org/10.1080/19490976.2022.2147055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferri C, Castellazzi M, Merli N, Laudisi M, Baldin E, Baldi E et al (2023) Gut Microbiota Changes during Dimethyl Fumarate Treatment in Patients with Multiple Sclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms24032720

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Vanessa Kitchin (librarian, University of British Columbia Faculty of Medicine) for assistance in refining the search strategy used in this review. This study was supported, in part, by the 2022 UBC Multiple Sclerosis Connect Program Summer Studentship Award funded by the Christopher Foundation (recipient: CT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Tremlett.

Ethics declarations

Conflicts of interest

CT received support from the 2022 University of British Columbia (UBC) MS Connect Summer Studentship Award funded from the Christopher Foundation to conduct this work. CT receives funding from the Consortium of MS Centres and has had travel expenses reimbursed by MS Canada. SJ reports no disclosures. HT has, in the last 5 years, received research support from the Canada Research Chair Program, the National Multiple Sclerosis Society, the Canadian Institutes of Health Research, the Multiple Sclerosis Society of Canada, the Multiple Sclerosis Scientific Research Foundation and the EDMUS Foundation (‘Fondation EDMUS contre la sclérose en plaques’); in addition, in the last 5 years, has had travel expenses or registration fees prepaid or reimbursed to present at CME conferences from the Consortium of MS Centres (2018, 2023), National MS Society (2016, 2018, 2022), ECTRIMS/ACTRIMS (2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), and American Academy of Neurology (2015, 2016, 2019). Speaker honoraria are either declined or donated to an MS charity or to an unrestricted grant for use by HT’s research group.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CC., Jette, S. & Tremlett, H. Disease-modifying therapies used to treat multiple sclerosis and the gut microbiome: a systematic review. J Neurol 271, 1108–1123 (2024). https://doi.org/10.1007/s00415-023-12107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12107-0

Keywords

Navigation