Skip to main content

Advertisement

Log in

Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Spinocerebellar ataxia type 8 (SCA8) is a rare autosomal dominant neurodegenerative disease caused by CTA/CTG repeat expansion in the ATXN8/ATXN8OS gene.

Methods

To analyze the frequency and clinical characteristics of SCA8 patients in mainland China, we combined polymerase chain reaction (PCR) and triplet repeat-primed PCR (TRP-PCR) to detect the CTA/CTG expansion. We studied a cohort of 362 ataxia patients in which the other known causative genes had been previously excluded, from among 1294 index patients. Positive samples were validated by southern blotting.

Results

The CTA/CTG expansion was observed in six probands, accounting for approximately 0.46% (6/1294) in all patients, and 1.66% (6/362) in patients without definite molecular diagnosis. Clinically, aside from the typical SCA8 phenotype, some patients carrying the CTA/CTG expansion exhibited the cerebellar form of multisystem atrophy (MSA-C) and ataxia with paroxysmal kinesigenic dyskinesia (PKD).

Conclusion

For the first time, we described the PKD phenotype in association with CTA/CTG expansion, suggesting that CTA/CTG expansion might play a role in the pathogenesis of paroxysmal dyskinesia symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894. https://doi.org/10.1016/s1474-4422(10)70183-6

    Article  CAS  PubMed  Google Scholar 

  2. Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379–384. https://doi.org/10.1038/7710

    Article  CAS  PubMed  Google Scholar 

  3. Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP (2000) Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 55:649–657

    Article  CAS  Google Scholar 

  4. Zeman A (2004) Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatr 75:459–465. https://doi.org/10.1136/jnnp.2003.018895

    Article  CAS  Google Scholar 

  5. Felling RJ, Barron TF (2005) Early onset of ataxia in a child with a pathogenic SCA8 allele. Pediatr Neurol 33:136–138. https://doi.org/10.1016/j.pediatrneurol.2005.02.010

    Article  PubMed  Google Scholar 

  6. Lilja A, Hamalainen P, Kaitaranta E, Rinne R (2005) Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci 237:31–38. https://doi.org/10.1016/j.jns.2005.05.008

    Article  PubMed  Google Scholar 

  7. Torrens L, Burns E, Stone J, Graham C, Wright H, Summers D, Sellar R, Porteous M, Warner J, Zeman A (2008) Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurol Scand 117:41–48. https://doi.org/10.1111/j.1600-0404.2007.00904.x

    Article  CAS  PubMed  Google Scholar 

  8. Munhoz RP, Teive HA, Raskin S, Werneck LC (2009) CTA/CTG expansions at the SCA 8 locus in multiple system atrophy. Clin Neurol Neurosurg 111:208–210. https://doi.org/10.1016/j.clineuro.2008.09.003

    Article  PubMed  Google Scholar 

  9. Gupta A, Jankovic J (2009) Spinocerebellar ataxia 8: variable phenotype and unique pathogenesis. Parkinsonism Relat Disord 15:621–626. https://doi.org/10.1016/j.parkreldis.2009.06.001

    Article  PubMed  Google Scholar 

  10. Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP (2000) SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 9:2125–2130

    Article  CAS  Google Scholar 

  11. Vincent JB, Neves-Pereira ML, Paterson AD, Yamamoto E, Parikh SV, Macciardi F, Gurling HM, Potkin SG, Pato CN, Macedo A, Kovacs M, Davies M, Lieberman JA, Meltzer HY, Petronis A, Kennedy JL (2000) An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet 66:819–829. https://doi.org/10.1086/302803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LP (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38:758–769. https://doi.org/10.1038/ng1827

    Article  CAS  PubMed  Google Scholar 

  13. Juvonen V, Hietala M, Paivarinta M, Rantamaki M, Hakamies L, Kaakkola S, Vierimaa O, Penttinen M, Savontaus ML (2000) Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol 48:354–361

    Article  CAS  Google Scholar 

  14. Ikeda Y, Dalton JC, Moseley ML, Gardner KL, Bird TD, Ashizawa T, Seltzer WK, Pandolfo M, Milunsky A, Potter NT, Shoji M, Vincent JB, Day JW, Ranum LP (2004) Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet 75:3–16. https://doi.org/10.1086/422014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silveira I, Alonso I, Guimaraes L, Mendonca P, Santos C, Maciel P, Fidalgo De Matos JM, Costa M, Barbot C, Tuna A, Barros J, Jardim L, Coutinho P, Sequeiros J (2000) High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 66:830–840. https://doi.org/10.1086/302827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cellini E, Nacmias B, Forleo P, Piacentini S, Guarnieri BM, Serio A, Calabro A, Renzi D, Sorbi S (2001) Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Italy. Arch Neurol 58:1856–1859

    Article  CAS  Google Scholar 

  17. Cintra VP, Lourenço CM, Marques SE, de Oliveira LM, Tumas V, Marques W (2014) Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci 347:375–379. https://doi.org/10.1016/j.jns.2014.10.036

    Article  PubMed  Google Scholar 

  18. Topisirovic I, Dragasevic N, Savic D, Ristic A, Keckarevic M, Keckarevic D, Culjkovic B, Petrovic I, Romac S, Kostic VS (2002) Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clin Genet 62:321–324

    Article  CAS  Google Scholar 

  19. Musova Z, Sedlacek Z, Mazanec R, Klempir J, Roth J, Plevova P, Vyhnalek M, Kopeckova M, Apltova L, Krepelova A, Zumrova A (2013) Spinocerebellar ataxias type 8, 12, and 17 and dentatorubro-pallidoluysian atrophy in Czech ataxic patients. Cerebellum 12:155–161. https://doi.org/10.1007/s12311-012-0403-5

    Article  PubMed  Google Scholar 

  20. Hu Y, Hashimoto Y, Ishii T, Rayle M, Soga K, Sato N, Okita M, Higashi M, Ozaki K, Mizusawa H, Ishikawa K, Yokota T (2017) Sequence configuration of spinocerebellar ataxia type 8 repeat expansions in a Japanese cohort of 797 ataxia subjects. J Neurol Sci 382:87–90. https://doi.org/10.1016/j.jns.2017.08.3256

    Article  PubMed  Google Scholar 

  21. Wang M, Guo S, Yao W, Wang J, Tao J, Zhou Y, Ying B (2018) Identification of abnormal 51 CTA/CTG expansion as probably the shortest pathogenic allele for spinocerebellar ataxia-8 in China. Neurosci Bull 34:859–862. https://doi.org/10.1007/s12264-018-0247-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soong BW, Lu YC, Choo KB, Lee HY (2001) Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 58:1105–1109

    Article  CAS  Google Scholar 

  23. Wu YR, Chen IC, Soong BW, Kao SH, Lee GC, Huang SY, Fung HC, Lee-Chen GJ, Chen CM (2009) SCA8 repeat expansion: large CTA/CTG repeat alleles in neurological disorders and functional implications. Hum Genet 125:437–444. https://doi.org/10.1007/s00439-009-0641-x

    Article  CAS  PubMed  Google Scholar 

  24. Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14

    CAS  PubMed  Google Scholar 

  25. Krysa W, Rajkiewicz M, Sutek A (2012) Rapid detection of large expansions in progressive myoclonus epilepsy type 1, myotonic dystrophy type 2 and spinocerebellar ataxia type 8. Neurologia i Neurochirurgia Polska 46:113–120. https://doi.org/10.5114/ninp.2012.28253

    Article  PubMed  Google Scholar 

  26. Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, Liang Y, San A, Li N, Chen SQ, Guo JF, Jiang H, Shen L, Zheng L, Mao X, Yan WQ, Zhou Y, Shi YT, Ai SX, Dai MZ, Zhang P, Xia K, Chen SD, Tang BS (2011) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134:3493–3501. https://doi.org/10.1093/brain/awr289

    Article  PubMed  Google Scholar 

  27. Smetcoren C, Weckhuysen D (2016) SCA 8 mimicking MSA-C. Acta Neurol Belg 116:221–222. https://doi.org/10.1007/s13760-015-0523-z

    Article  PubMed  Google Scholar 

  28. Sobrido MJ, Cholfin JA, Perlman S, Pulst SM, Geschwind DH (2001) SCA8 repeat expansions in ataxia: a controversial association. Neurology 57:1310–1312

    Article  CAS  Google Scholar 

  29. Hirano M, Samukawa M, Isono C, Saigoh K, Nakamura Y, Kusunoki S (2018) Noncoding repeat expansions for ALS in Japan are associated with the ATXN8OS gene. Neurol Genet 4:e252. https://doi.org/10.1212/nxg.0000000000000252

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vincent JB, Yuan QP, Schalling M, Adolfsson R, Azevedo MH, Macedo A, Bauer A, DallaTorre C, Medeiros HM, Pato MT, Pato CN, Bowen T, Guy CA, Owen MJ, O’Donovan MC, Paterson AD, Petronis A, Kennedy JL (2000) Long repeat tracts at SCA8 in major psychosis. Am J Med Genet 96:873–876

    Article  CAS  Google Scholar 

  31. Ikeda Y, Daughters RS, Ranum LP (2008) Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 7:150–158. https://doi.org/10.1007/s12311-008-0010-7

    Article  CAS  PubMed  Google Scholar 

  32. Chen WL, Lin JW, Huang HJ, Wang SM, Su MT, Lee-Chen GJ, Chen CM, Hsieh-Li HM (2008) SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 1233:176–184. https://doi.org/10.1016/j.brainres.2008.07.096

    Article  CAS  PubMed  Google Scholar 

  33. He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26:9975–9982. https://doi.org/10.1523/jneurosci.2595-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aromolaran KA, Benzow KA, Koob MD, Piedras-Renteria ES (2007) The Kelch-like protein 1 modulates P/Q-type calcium current density. Neuroscience 145:841–850. https://doi.org/10.1016/j.neuroscience.2006.12.046

    Article  CAS  PubMed  Google Scholar 

  35. Bushart DD, Shakkottai VG (2019) Ion channel dysfunction in cerebellar ataxia. Neurosci Lett 688:41–48. https://doi.org/10.1016/j.neulet.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  36. Factor SA, Qian J, Lava NS, Hubbard JD, Payami H (2005) False-positive SCA8 gene test in a patient with pathologically proven multiple system atrophy. Ann Neurol 57:462–463. https://doi.org/10.1002/ana.20389

    Article  PubMed  Google Scholar 

  37. Schols L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, Riess O (2000) Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 107:132–137

    Article  CAS  Google Scholar 

  38. Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, Wang X, Sun Z (2018) Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res 46:7793–7804. https://doi.org/10.1093/nar/gky678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the participating patients for their involvement. This work was supported by the National Key Research and Development Program of China (#2018YFC1312003, 2016YFC1306000); the Program of National Natural Science Foundation of China (#81671120, 81300981, 81430023, 81771231); the Clinical Scientific program of Xiangya Hospital, Central South University (#2015105); and Innovation Driven Program of Central South University (#506010108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Ethics Committee and the Expert Committee of Xiangya Hospital, Central South University (equivalent to an Institutional Review Board).

Informed consent

Informed consent was obtained in writing from all participants.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supplementary Table 3. List of variants identified by whole exome sequencing in the patient with PKD phenotype. The criteria for filtering: (1) dominant pattern: heterozygous variants (MAF ≤ 0.001). (2) recessive pattern: homozygous variants and compound heterozygous variants (MAF ≤ 0.01). In silico analysis: (1) stop gain/loss, frameshift and splice site mutations: falling within two base pairs of exon–intron junctions; (2) missense variants functionally predicted to be deleterious (REVE > 0.7). MAF minor allele frequency, REVE [38] combination of REVEL and VEST3.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 15 kb)

Supplementary material 3 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yuan, Y., Liu, Z. et al. Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China. J Neurol 266, 2979–2986 (2019). https://doi.org/10.1007/s00415-019-09519-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09519-2

Keywords

Navigation