Skip to main content

Advertisement

Log in

Simple and field-adapted species identification of biological specimens combining multiplex multienzyme isothermal rapid amplification, lateral flow dipsticks, and universal primers for initial rapid screening without standard PCR laboratory

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Species identification of biological specimens can provide the valuable clues and accelerate the speed of prosecution material processing for forensic investigation, especially when the case scene is inaccessible and the physical evidence is cumbersome. Thus, establishing a rapid, simple, and field-adapted species identification method is crucial for forensic scientists, particularly as first-line technology at the crime scene for initial rapid screening. In this study, we established a new field-adapted species identification method by combining multiplex multienzyme isothermal rapid amplification (MIRA), lateral flow dipstick (LFD) system, and universal primers. Universal primers targeting COX I and COX II genes were used in multiplex MIRA-LFD system for seven species identification, and a dedicated MIRA-LFD system primer targeting CYT B gene was used to detect the human material. DNA extraction was performed by collecting DNA directly from the centrifuged supernatant. Our study found that the entire amplification process took only 15 min at 37 °C and the results of LFDs could be visually observed after 10 min. The detection sensitivity of human material could reach 10 pg, which is equivalent to the detection of single cell. Different common animal samples mixed at the ratio of 1 ng:1 ng, 10 ng:1 ng, and 1 ng:10 ng could be detected successfully. Furthermore, the damaged and degraded samples could also be detected. Therefore, the convenient, feasible, and rapid approach for species identification is suitable for popularization as first-line technology at the crime scene for initial rapid screening and provides a great convenient for forensic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Shneer VS (2009) DNA barcoding of animal and plant species as an approach for their molecular identification and describing of diversity. Zh Obshch Biol 70(4):296–315

    PubMed  CAS  Google Scholar 

  2. Staats M et al (2016) Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem 408(17):4615–4630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dalsecco LS et al (2018) A fast and reliable real-time PCR method for detection of ten animal species in meat products. J Food Sci 83(2):258–265

    Article  PubMed  CAS  Google Scholar 

  4. Mori C, Matsumura S (2022) Development and validation of simultaneous identification of 26 mammalian and poultry species by a multiplex assay. Int J Legal Med 136(1):1–12

    Article  PubMed  Google Scholar 

  5. Sikes DS et al (2017) Building a DNA barcode library of Alaskas non-marine arthropods. Genome 60(3):248–259

    Article  PubMed  CAS  Google Scholar 

  6. Zangl L et al (2020) A reference DNA barcode library for Austrian amphibians and reptiles. PLoS One 15(3):e0229353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kress WJ, Erickson DL (2012) DNA barcodes: methods and protocols. Methods Mol Biol 858:3–8

    Article  PubMed  CAS  Google Scholar 

  8. Antil S et al (2023) DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep 50(1):761–775

    Article  PubMed  CAS  Google Scholar 

  9. Kher CP et al (2011) Barcoding Tetrahymena: discriminating species and identifying unknowns using the cytochrome c oxidase subunit I (cox-1) barcode. Protist 162(1):2–13

    Article  PubMed  CAS  Google Scholar 

  10. Tobe SS, Linacre AM (2008) A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis 29(2):340–347

    Article  PubMed  CAS  Google Scholar 

  11. Hebert PD et al (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270(1512):313–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nicolas V et al (2012) Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PLoS One 7(5):e36586

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  13. Balech B et al (2018) Tackling critical parameters in metazoan meta-barcoding experiments: a preliminary study based on coxI DNA barcode. PeerJ 6:e4845

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu J et al (2020) DNA barcode technology and its application prospects in forensic medicine. Fa Yi Xue Za Zhi 36(4):559–564

    PubMed  CAS  Google Scholar 

  15. Piepenburg O et al (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun ML et al (2021) Simple and feasible detection of hepatitis B virus via combination of multienzyme isothermal rapid amplification and lateral flow dipstick strip. Front Mol Biosci 8:763079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Heng P et al (2022) Rapid detection of Staphylococcus aureus using a novel multienzyme isothermal rapid amplification technique. Front Microbiol 13:1027785

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hu WW et al (2022) Development and evaluation of a rapid and sensitive multienzyme isothermal rapid amplification with a lateral flow dipstick assay for detection of Acinetobacter baumannii in spiked blood specimens. Front Cell Infect Microbiol 12:1010201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu JY (2014) Direct qPCR quantification using the Quantifiler((R)) Trio DNA quantification kit. Forensic Sci Int Genet 13:10–19

    Article  PubMed  CAS  Google Scholar 

  21. Cho S et al (2014) Forensic application of SNP-based resequencing array for individual identification. Forensic Sci Int Genet 13:45–52

    Article  PubMed  CAS  Google Scholar 

  22. Fang X, Zhang C (2016) Detection of adulterated murine components in meat products by TaqMan(c) real-time PCR. Food Chem 192:485–490

    Article  PubMed  CAS  Google Scholar 

  23. Ramon-Laca A et al (2013) Identification multiplex assay of 19 terrestrial mammal species present in New Zealand. Electrophoresis 34(24):3370–3376

    Article  PubMed  CAS  Google Scholar 

  24. Pereira F et al (2010) Identification of species by multiplex analysis of variable-length sequences. Nucleic Acids Res 38(22):e203

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakamura H et al (2009) Forensic species identification based on size variation of mitochondrial DNA hypervariable regions. Int J Legal Med 123(2):177–184

    Article  PubMed  Google Scholar 

  26. Wakayama M, Hirayama A, Soga T (2015) Capillary electrophoresis-mass spectrometry. Methods Mol Biol 1277:113–122

    Article  PubMed  CAS  Google Scholar 

  27. Madkour FA, Abdelsabour-Khalaf M (2022) Performance scanning electron microscopic investigations and elemental analysis of hair of the different animal species for forensic identification. Microsc Res Tech 85(6):2152–2161

    Article  PubMed  CAS  Google Scholar 

  28. Liu X et al (2011) An overview of the legislation and light microscopy for detection of processed animal proteins in feeds. Microsc Res Tech 74(8):735–743

    Article  MathSciNet  PubMed  CAS  Google Scholar 

  29. Ji C et al (2022) Development of a multienzyme isothermal rapid amplification and lateral flow dipstick combination assay for bovine coronavirus detection. Front Vet Sci 9:1059934

    Article  PubMed  Google Scholar 

  30. Sun ML et al (2023) Simple and feasible detection of hepatitis a virus using reverse transcription multienzyme isothermal rapid amplification and lateral flow dipsticks without standard PCR laboratory. Artif Cells Nanomed Biotechnol 51(1):233–240

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation Medical-Industrial Crossover Joint Fund Program of Liaoning Province (2022-YGJC-45) and the project of China Medical University-Shenyang Branch of Chinese Academy of Sciences Scientist Partner in 2022 (HZHB2022008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yao or Xiao-na Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mao-ling Sun and Ying Yang are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Ml., Yang, Y., Hu, R. et al. Simple and field-adapted species identification of biological specimens combining multiplex multienzyme isothermal rapid amplification, lateral flow dipsticks, and universal primers for initial rapid screening without standard PCR laboratory. Int J Legal Med 138, 561–570 (2024). https://doi.org/10.1007/s00414-023-03101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03101-2

Keywords

Navigation