Skip to main content

Advertisement

Log in

A full Bayesian calibration model for assessing age in adults by means of pulp/tooth area ratio in periapical radiography

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The Bayesian approach is being a fundamental tool in forensic and legal field where inferences and decisions are made. In this study, a full Bayesian calibration model was developed to make probabilistic inferences about age estimation in a reference sample of 891 periapical X-rays of upper and lower canines. These teeth belonged to both deceased and living adult subjects, aged between 20 and 86 years, coming from five different countries (Turkey, Italy, Portugal, Japan and Mexico). For this purpose, the narrowing of pulp chamber due to the apposition of secondary dentine was analysed by means of the pulp/tooth area ratio. To determine the agreement of the method, intra- and inter-observer differences for measuring process were calculated by means of the intraclass correlation coefficient (ICC) analysis. Observer error tests showed excellent agreement between observers and between repeated assessments. According to the results of the ANCOVA, neither nationality nor sex was associated to the secondary dentine apposition while it is associated with individual’s age. The results of the present study indicated that the concept of probability is intrinsically linked to the assessment of age in a forensic context, and the Bayesian approach could be considered a robust tool to overtake the bias generated by traditional regression models, thus helping the decision-making process in a legal framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Austin D, King RE (2016) The biological profile of unidentified human remains in a forensic context. Acad Forensic Pathol 6(3):370–390. https://doi.org/10.23907/2016.039

    Article  PubMed  PubMed Central  Google Scholar 

  2. Santoro V, De Donno A, Marrone M, Campobasso CP, Introna F (2009) Forensic age estimation of living individuals: a retrospective analysis. Forensic Sci Int 193:129.e1-.e4. https://doi.org/10.1016/j.forsciint.2009.09.014

  3. Beh P, Payne-James J (2010) Clinical and legal requirements for age determination in the living. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 30–42

    Chapter  Google Scholar 

  4. Adserias-Garriga J, Zapico SC (2018) Age assessment in forensic cases: anthropological, odontological and biochemical methods for age estimation in the dead. M J Foren 1(1):001

    Google Scholar 

  5. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13

    Article  CAS  Google Scholar 

  6. Aggrawal A, Setia P, Gupta A, Busuttil A (2010) Age evaluation after growth cessation. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 236–266

    Chapter  Google Scholar 

  7. Adserias-Garriga J (2019) Evolution of methods and state-of-the-art in dental age estimation. In: Adserias-Garriga J (ed) Age estimation. Elsevier, Amsterdam, pp 77–87

    Chapter  Google Scholar 

  8. Martín-de las Heras S (2019) Dental age estimation in adults. In: Adserias-Garriga J (ed) Age estimation. Elsevier, Amsterdam, pp 77–87

    Google Scholar 

  9. Lucy D (2010) The presentation of results and statistics for legal purposes. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practioner’s guide. John Wiley & Sons, Hoboken, pp 267–283

    Chapter  Google Scholar 

  10. Gustafson G, Malmo OD (1952) Age determination on teeth. J Am Dent Assoc 45:45–54

    Google Scholar 

  11. Stavrianos C, Mastagas D, Stavrianou I, Karaiskou O (2008) Dental age estimation of adults: a review of methods and principals. Res J Med Sci 2:258–268

    Google Scholar 

  12. Kvaal SI, Kolltveit KM, Thomsen IO, Solheim T (1995) Age estimation of adults from dental radiographs. Forensic Sci Int 74:175–185. https://doi.org/10.1016/0379-0738(95)01760-G

    Article  CAS  PubMed  Google Scholar 

  13. Agematsu H, Someda H, Hashimoto M, Matsunaga S, Abe S, Kim HJ, Koyama T, Naito H, Ishida R, Ide Y (2010) Three-dimensional observation of decrease in pulp cavity volume using micro-CT: age-related change. Bull Tokyo Dent Coll 51:1–6

    Article  Google Scholar 

  14. Sasaki T, Kondo O (2014) Human age estimation from lower-canine pulp volume ratio based on Bayes’ theorem with modern Japanese population as prior distribution. Anthropol Sci 122(1):23–35

    Article  Google Scholar 

  15. Kazmi S, Mânica S, Revie G, Shepherd S, Hector M (2019) Age estimation using canine pulp volumes in adults: a CBCT image analysis. Int J Legal Med 133:1967–1976. https://doi.org/10.1007/s00414-019-02147-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Angelis D, Gaudio D, Guercini N, Cipriani F, Gibelli D, Caputi S, Cattaneo C (2015) Age estimation from canine volumes. Radiol Med 120(8):731–736. https://doi.org/10.1007/s11547-015-0521-5

    Article  PubMed  Google Scholar 

  17. Cameriere R, Ferrante L, Belcastro MG, Bonfiglioli B, Rastelli E, Cingolani M (2007) J Forensic Sci 52(1):166e170

    Article  Google Scholar 

  18. Marroquin TY, Karkhanis S, Kvaal SI, Vasudavan S, Kruger E, Tennant M (2017) Age estimation in adults by dental imaging assessment systematic review. Forensic Sci Int 275:203–211. https://doi.org/10.1016/j.forsciint.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  19. De Luca S, Alemán I, Bertoldi F, Ferrante L, Mastrangelo P, Cingolani M, Cameriere R (2010) Age estimation by tooth/pulp ratio in canines by peri-apical X-rays: reliability in age determination of Spanish and Italian medieval skeletal remains. J Archaeol Sci 37(12):3048–3058

    Article  Google Scholar 

  20. Zelic K, Pavlovic S, Mijucic J, Djuric M, Djonic D (2020) Applicability of pulp/tooth ratio method for age estimation. Forensic Sci Med Pathol 16:43–48. https://doi.org/10.1007/s12024-019-00200-8

    Article  PubMed  Google Scholar 

  21. Konigsberg LW, Frankenberg SR (1992) Estimation of age structure in anthropo-logical demography. Am J Phys Anthropol 89:235–256. https://doi.org/10.1002/ajpa.1330890208

    Article  CAS  PubMed  Google Scholar 

  22. Jackson G (2000) The scientist and the scales of justice. Sci Justice 40:81–85

    Article  Google Scholar 

  23. Aitken CGG, Taroni F, Biedermann A (2013) Statistical interpretation of evidence: Bayesian analysis. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences. Academic Press, Waltham, pp 292–297

    Chapter  Google Scholar 

  24. Perinetti G (2018) StaTips part IV: selection, interpretation and reporting of the intraclass correlation coefficient. South Eur J Orthod Dentofac Res 5(1):3–5

    Article  Google Scholar 

  25. Ferrante L, Skrami E, Gesuita R, Cameriere R (2015) Bayesian calibration for forensic age estimation. Stat Med 30:1779–1790

    Article  Google Scholar 

  26. Bucci A, Skrami E, Faragalli A, Gesuita R, Cameriere R, Carle F, Ferrante L (2019) Segmented Bayesian calibration approach for estimating age in forensic science. Biom J 61(6):1575–1594. https://doi.org/10.1002/bimj.201900016

    Article  PubMed  Google Scholar 

  27. Efron B (1982) The jackknife, the bootstrap, and other resampling plans. CBMS-NSF Regional Conference Series in Applied Mathematics, vol 38. Society for Industrial and Applied Mathematics, Philadelphia, Pa

  28. Core Team R (2020) R: a language and environment for statistical computing. In: R Foundation for statistical computing. Austria. URL, Vienna www.R-project.org/

    Google Scholar 

  29. Taroni F, Biedermann A (2014) Probability and inference in forensic science. In: Bruinsma G, Weisburd D (eds) Encyclopedia of criminology and criminal justice. Springer Science & Business Media, New York, pp 3947–3957

    Chapter  Google Scholar 

  30. Ubelaker D, Khosrowshahi H (2019) Estimation of age in forensic anthropology: historical perspective and recent methodological advances. Forensic Sci Res 4(1):1–9

    Article  Google Scholar 

  31. Nawrocki SP (2010) The nature and sources of error in the estimation of age at death from the human skeleton. In: Latham KE, Finnegan M (eds) Age estimation of the human skeleton. Charles C. Thomas, Springfield, pp 79–101

    Google Scholar 

  32. Márquez-Grant N (2015) An overview of age estimation in forensic anthropology: perspectives and practical considerations. Ann Hum Biol 42(4):308–322

    Article  Google Scholar 

  33. European Network of Forensic Scientific Institutes (ENFSI) (2015) ENFSI Guideline for evaluative reporting in forensic science: strengthening the evaluation of forensic results across Europe

  34. Langley-Shirley N, Jantz R (2010) A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci 55:571–583. https://doi.org/10.1111/j.1556-4029.2010.01089.x

    Article  PubMed  Google Scholar 

  35. Lucy D, Aykroyd RG, Pollard AM, Solheim T (1996) A Bayesian approach to adult human age estimation from dental observations by Johanson’s age changes. J Forensic Sci 41:189–194

    Article  CAS  Google Scholar 

  36. Sironi E, Taroni F, Baldinotti C, Nardi C, Norelli G, Gallidabino M, Pinchi V (2018) Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence. Int J Legal Med 132(4):1125–1138. https://doi.org/10.1007/s00414-0171733-0

    Article  PubMed  Google Scholar 

  37. Nikita E, Nikitas P (2019) Skeletal age-at-death estimation: Bayesian versus regression methods. Forensic Sci Int 297:56–64

    Article  Google Scholar 

  38. Nikita E, Xanthopoulou P, Kranioti EF (2018) An evaluation of Bayesian age estimation using the auricular surface in modern Greek material. Forensic Sci Int 291:1–11. https://doi.org/10.1016/j.forsciint.2018.07.029

    Article  PubMed  Google Scholar 

  39. Biedermann A, Taroni F, Aitken C (2014) Liberties and constraints of the normative approach to evaluation and decision in forensic science: a discussion towards overcoming some common misconceptions. Law Probab Risk 13:181–191

    Article  Google Scholar 

  40. Biedermann A, Bozza S, Taroni F (2017) Analysing and exemplifying forensic conclusion criteria in terms of Bayesian decision theory. Sci Justice 58(2):159–165. https://doi.org/10.1016/j.scijus.2017.07.002

    Article  PubMed  Google Scholar 

  41. Prince DA, Konigsberg LW (2008) New formulae for estimating age-at-death in the Balkans utilizing Lamendin’s dental technique and Bayesian analysis. J Forensic Sci 53(3):578–587

    Article  Google Scholar 

  42. Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124(1):35–42. https://doi.org/10.1007/s00414-009-0329-8

    Article  CAS  PubMed  Google Scholar 

  43. Sakhdari S, Mehralizadeh S, Zolfaghari M, Madadi M (2015) Age estimation from pulp/tooth area ratio using digital panoramic radiography. JIDAI 27(1):1

    Google Scholar 

  44. Zaher JF, Fawzy IA, Habib SR, Ali MM (2011) Age estimation from pulp/tooth area ratio in maxillary incisors among Egyptians using dental radiographic images. J Forensic Legal Med 18(2):62–65

    Article  Google Scholar 

  45. Cameriere R, De Luca S, Egidi N, Bacaloni M, Maponi P, Ferrante L, Cingolani M (2015) Automatic age estimation in adults by analysis of canine pulp/tooth ratio: preliminary results. JOFRI 3(1):61–66. https://doi.org/10.1016/j.jofri.2014.10.001

    Article  Google Scholar 

  46. Pascal P (2010) The human canine: its evolution and adaptive significance. J Dentofacial Anom Orthod 13:4–10

    Article  Google Scholar 

  47. Tardivo D, Sastre J, Ruquet M, Thollon L, Adalian P, Leonetti G, Foti B (2011) Three-dimensional modeling of the various volumes of canines to determine age and sex: a preliminary study. J Forensic Sci 56:766–770

    Article  Google Scholar 

  48. Gulsahi A, Kivanc Kulah C, Bakirarar B, Gulen O, Kamburoglu (2018) Age estimation based on pulp/tooth volume ratio measured on cone-beam CT images. Dentomaxillofac Radiol 47(1):20170239. https://doi.org/10.1259/dmfr.20170239

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano De Luca.

Ethics declarations

The study was carried out in accordance with the ethical standards laid down by the Declaration of Helsinki (Finland).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The first step in Bayesian analysis is to choose a probability model for the observed data. Suppose that, for each individual, the observations can be summarised by his age, t, and by the value, x, of RAu or RAl. In our Bayesian calibration approach, the probability model for a typical observation, (x | t, θ), is assumed to be normal with mean μ = μ(t, β) and variance σ2:

$$ p\left(x\ |\ t,\boldsymbol{\theta} \right)=\frac{1}{\sqrt{2\pi {\sigma}^2}}\exp \left\{-\frac{{\left(x-\mu \left(t,\boldsymbol{\beta} \right)\right)}^2}{2{\sigma}^2}\right\} $$
(A1)

A linear function was used to model the expected value in (A1):

$$ \mu =\mu \left(t,\boldsymbol{\beta} \right)={\beta}_0+{\beta}_1\cdotp t $$
(A2)

The vector of the model parameters, θ, consists of the coefficients, β, of the linear function and the model variance σ2. Vector θ = (β, σ2) is supported by parameter space Θ ⊆ 2 × (0, +∞) and considers a vector of three random variables, the joint prior distribution of which is h(θ). We assume that:

  • (A3) observations are independent and identically distributed with the probability model for observed data of the form p(xi| ti, θ), i = 1, …n, with unknown vector of parameters θ;

  • (A4) given age u and θ, the new observation y is independent of the observed data and follows the same probability model.

With these assumptions, given observations t and x, the posterior distribution for θ may be written as:

$$ h\left(\boldsymbol{\theta}\ |\ \boldsymbol{t},\boldsymbol{x}\right)=\frac{h\left(\boldsymbol{\theta} \right)p\left(\boldsymbol{x}\ |\ \boldsymbol{t},\boldsymbol{\theta} \right)}{\underset{\Theta}{\int }h\left(\boldsymbol{\theta} \right)p\left(\boldsymbol{x}\ |\ \boldsymbol{t},\boldsymbol{\theta} \right)d\boldsymbol{\theta}}=\kern0.5em \frac{h\left(\boldsymbol{\theta} \right)\prod \limits_{i=1}^np\left({\boldsymbol{x}}_{\boldsymbol{i}}\ |\ {t}_i,\boldsymbol{\theta} \right)}{\underset{\Theta}{\int }h\left(\boldsymbol{\theta} \right)\prod \limits_{i=1}^np\left({\boldsymbol{x}}_{\boldsymbol{i}}\ |\ {t}_i,\boldsymbol{\theta} \right)d\boldsymbol{\theta}}. $$

Lastly, the calibrating distribution may be written as:

$$ f\left(u\ |\ y,\boldsymbol{t},\boldsymbol{x}\right)=\frac{p(u)\phi \left(y\ |\ u,\boldsymbol{t},\boldsymbol{x}\right)}{\underset{0}{\overset{+\infty }{\int }}p(u)\phi \left(y\ |\ u,\boldsymbol{t},\boldsymbol{x}\right) du} $$
(A5)

where ϕ(y | u, t, x) is the predictive distribution:

$$ \phi \left(y\ |\ u,\boldsymbol{t},\boldsymbol{x}\right)=\underset{\Theta}{\int }p\left(y\ |\ u,\boldsymbol{\theta} \right)\ h\left(\boldsymbol{\theta}\ |\ \boldsymbol{t},\boldsymbol{x}\right)d\boldsymbol{\theta} $$
(A6)

and p(u) is the prior distribution of age.

Taking into account that no prior information is available about the model parameters, we chose an uninformative prior distribution for them. In addition, in view of the frequent lack of prior age information in forensic age estimation and paleodemography, an improper uniform prior for age distribution, p(u) was selected for the model.

Under the assumptions A1–A4 on our Bayesian model, Bucci et al. [26] proved that the posterior predictive distribution results in noncentral Student’s t distribution and, considering that we assume p(u) improper uniform prior, p(u), for age distribution, for a given new value of the dental maturity, y, the calibrating distribution, f(u |y, t, x), results a truncated noncentral Student’s t distribution with n-2 degree of freedom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameriere, R., De Luca, S., Soriano Vázquez, I. et al. A full Bayesian calibration model for assessing age in adults by means of pulp/tooth area ratio in periapical radiography. Int J Legal Med 135, 677–685 (2021). https://doi.org/10.1007/s00414-020-02438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02438-2

Keywords

Navigation