Skip to main content
Log in

Evidence supporting micro-galvanic coupling in sulphides leads to gold deposition

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Electrical micro-junctions in metal sulfides drive electrochemical reactions with passing gold-bearing fluids, resulting in the deposition of gold, even from under-saturated ore fluids. Understanding the role micro-junctions play in the deposition of gold requires (a) imaging the electric field distribution of a galvanic couple near the surface to qualify the existence of an active micro-geo-battery and (b) correlating it with gold precipitation on the p-type cathode side of the junction by mapping the host at minor and trace levels. Here we report on correlating electron back scattered diffraction (EBSD), particle induced X-ray emission (PIXE) elemental maps including micron-scaled gold hot spots with laser beam induced current (LBIC) photocurrent maps of galvanic coupling in natural arsenian pyrite from the Otago Schist in New Zealand. The results provide convincing evidence that sulphide electrochemical interactions can lead to gold electro-deposition. We finish by discussing a simplistic model of the processes involved in reference to the original model of Möller and Kersten (Miner Deposita 29(5):404–413. 1994), and discuss the effects of  temperature in light of recent-reported evidence of electrochemical gold deposition in the formation of hydrothermal gold deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from Xu et al. (Yong and Schoonen 2000). The top of each bar is the CB while the bottom is the VB. The two sulfides indicated are chalcopyrite and pyrite. The large variability in band positions is likely to result in a broad range of potential differences across any junctions formed. Also shown are position for the redox couples (Au3+/Au0), Fe3+/Fe2+ and O2/H2O taken from Osseo-Asare (1992)

Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraitis P (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process 74(1–4):41–59. http://linkinghub.elsevier.com/retrieve/pii/S0301751603001698. Accessed 31 Aug 2011

  • Bancroft GM, Jean G (1982) Gold deposition at low temperature on sulphide minerals. Nature 298(5876):730–731

    Article  Google Scholar 

  • Bancroft GM, Jeans G (1982) Gold deposit at low temperature on sufide minerals. Nature 298:730–731

    Article  Google Scholar 

  • Barnes SJSJ et al (2016) Primary cumulus platinum minerals in the Monts de Cristal complex, Gabon: magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy. Contrib Miner Petrol 171(3):1–18

    Article  Google Scholar 

  • Benning LG, Seward TM (1996) Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150–400 °C and 500–1500 bar. Geochim Cosmochim Acta 60(11):1849–1871

    Article  Google Scholar 

  • Boiron MC, Catheiineau M (1991) New improvements in the characterization of refractory gold in pyrites: an electron microprobe, M{õ}ssbauer spectrometry and ion microprobe study R Marion.

  • Boyle RW (1987) Gold: history and genesis of deposits. Van Nostrand-Reinhold Company, New York

    Book  Google Scholar 

  • Bronold M, Tomm Y, Jaegermann W (1994) Surface states on cubic d-band semiconductor pyrite (FeS2). Surf Sci 314(3):5

    Article  Google Scholar 

  • Bryson LJ, Crundwell FK (2014) The anodic dissolution of pyrite (FeS2) in hydrochloric acid solutions. Hydrometallurgy 143:42–53. https://doi.org/10.1016/j.hydromet.2014.01.005

    Article  Google Scholar 

  • Cline J, Hofstra A, Muntean J, Tosdal R, Hickey K (2005) Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models. In: Economic geology 100th anniversary volume, pp 451–484

  • Craig JR, Vokes FM, Solberg TN (1998) Pyrite: physical and chemical textures. Mineral Depos 34(1):82–101. https://doi.org/10.1007/s001260050187

    Article  Google Scholar 

  • Craw D, Windle SJ (1999) Gold mineralization without quartz veins in a ductile-brittle shear zone, Macraes Mine, Otago Schist, pp 382–394

  • Craw D, MacKenzie D, Grieve P (2015) Supergene gold mobility in orogenic gold deposits, Otago Schist, New Zealand. N Zeal J Geol Geophys 58(2):123–136. https://doi.org/10.1080/00288306.2014.997746

    Article  Google Scholar 

  • Crundwell FK (1988) The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21(2):155–190

    Article  Google Scholar 

  • Crundwell FK (2014) The mechanism of dissolution of minerals in acidic and alkaline solutions: Part III. Application to oxide, hydroxide and sulfide minerals. Hydrometallurgy 149:71–81

    Article  Google Scholar 

  • Crundwell FK (2015) The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can Metall Q 54(3):279–288. https://doi.org/10.1179/1879139515Y.0000000007

    Article  Google Scholar 

  • Deditius AP et al (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42(1):32–46. https://doi.org/10.1016/j.oregeorev.2011.03.003

    Article  Google Scholar 

  • Eggleston CM, Hochella MF Jr (1992) Scanning tunneling microscopy of pyrite {100}: surface structure and step reconstruction. Am Miner 77:221–224

    Google Scholar 

  • Fleet ME, Mumin AH (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am Miner 82(1–2):182–193

    Article  Google Scholar 

  • Fleet ME et al (1993) Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. Can Mineral 31(1):1–17

    Google Scholar 

  • Foya SN et al (1999) PIXE microanalysis of gold-pyrite associations from the Kimberley Reefs, Witwatersrand basin, South Africa. Nucl Instrum Methods Phys Res Sect B 158(1):588–592

    Article  Google Scholar 

  • Fuchs S, Williams-Jones AE, Przybylowicz WJ (2016) The origin of the gold and uranium ores of the Black Reef Formation, Transvaal Supergroup, South Africa. Ore Geol Rev 72:149–164

    Article  Google Scholar 

  • Gerischer H (1969) Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis. Surf Sci 18(1):97–122

    Article  Google Scholar 

  • Gerischer H, Mindt W (1968) The mechanisms of the decomposition of semiconductors by electrochemical oxidation and reduction. Electrochim Acta 13(6):1329–1341

    Article  Google Scholar 

  • Holmes PR, Crundwell FK (1995) Kinetic aspects of galvanic interactions between minerals during dissolution. Hydrometallurgy 39(1–3):353–375

    Article  Google Scholar 

  • Hough RM et al (2008) Naturally occurring gold nanoparticles and nanoplates. Geology 36(7):571–574

    Article  Google Scholar 

  • Hyland MM, Bancroft GM (1989) An XPS study of gold deposition at low temperatures on sulphide minerals: Reducing agents. Geochim Cosmochim Acta 53:367–372

    Article  Google Scholar 

  • Knipe SW, Fleet ME (1997) Gold-copper alloy minerals from the Kerr mine, Ontario. Can Mineral 35(3):573–586

    Google Scholar 

  • Laird JS et al (2012a) Imaging micro-galvanic junctions in arsenian pyrite associated with impurity and mixed sulfide heterogeneity

  • Laird JS, Johnson BC, Ryan CG (2012b) Laser-beam-induced current microscopy of electric fields in natural minerals caused by impurity zonation and structural defects. Meas Sci Technol 23(8):085401

    Article  Google Scholar 

  • Laird JS, Large R, Ryan CG (2013a) Impurity heterogeneity in natural pyrite and its relation to internal electric fields mapped using remote laser beam induced current. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 306:249–252

    Article  Google Scholar 

  • Laird JS et al (2013b) A Labview based FPGA data acquisition with integrated stage and beam transport control. Nucl Instrum Methods Phys Res Sect B 306:71–75

    Article  Google Scholar 

  • Laird JSJS et al (2015) Microelectronic junctions in arsenian pyrite due to impurity and mixed sulfide heterogeneity. Am Miner 100(1):26–34

    Article  Google Scholar 

  • Large RR et al (2009) Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits. Econ Geol 104(5):635–668

    Article  Google Scholar 

  • Law JDM, Phillips GN (2005) Hydrothermal replacement model for Witwatersrand gold. In: One Hundredth Anniversary Volume. Society of Economic Geologists, pp 799–811

  • Lehner SW (2007) Effects from As, Co, and Ni impurities on pyrite oxidation kinetics: studies of charge transfer at a semiconductor/electrolyte interface. Thesis, p 137

  • Lehner S et al (2007) The effect of As Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochim Cosmochim Acta 71(10):2491–2509

    Article  Google Scholar 

  • Lehner S et al (2008) Electrochemical impedance spectroscopy of synthetic pyrite doped with As Co, and Ni. J Electrochem Soc 155(5):61

    Article  Google Scholar 

  • Lehner SW et al (2016) Defect energy levels and electronic behavior of Ni-, Co-, and As-doped synthetic pyrite (FeS2). J Appl Phys 083717:8

    Google Scholar 

  • Maddox LM et al (1998) Invisible gold: comparison of Au deposition on pyrite and arsenopyrite. Am Mineral 83(11–12 PART 1), 1240–1245. http://ammin.geoscienceworld.org/content/83/11-12_Part_1/1240.short. Accessed 26 Mar 2012.

  • Melling DR et al (1990) Carbonatization and propylitic alteration of fragmental basaltic rocks, Quesnel River gold deposit, Central British Columbia. Miner Depos 25(1):S115–S124

    Article  Google Scholar 

  • Memming R, Memming R (2015) Electrochemical Systems. In: Semiconductor electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 49–64. https://doi.org/10.1002/9783527688685.ch3.

  • Mench MM (2008) Fuel cell engines

  • Meyer FM et al (1994) The Gold-Pyrite Association in Witwatersrand Reefs—evidence for electrochemical precipitation of gold. In: Exploration and mining geology, vol 3, pp 207–217. ST–The Gold–Pyrite Association in Witwa.

  • Mills SE, Tomkins AG, Weinberg RF, Fan H-R (2015) Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China. Ore Geol Rev 71:150–168

    Article  Google Scholar 

  • Mirza AH, Doyle FM (1988) Correlation of the electrochemical-behavior of pyrite samples with their fundamental physical and chemical-properties. J Metals 40:9–10

    Google Scholar 

  • Misra KC (2000) Understanding mineral deposits. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Möller P, Kersten G (1994) Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces. Miner Depos 29(5):404–413

    Article  Google Scholar 

  • Möller P et al (1983) Geochemical proximity indicators of massive sulphide mineralization in the Iberian Pyrite Belt and the East Pontic metallotect. Miner Depos 18(2 Supplement):387–398

    Google Scholar 

  • Möller P et al (1997) Evidence for electrochemical deposition of gold onto arsenopyrite. Eur J Mineral 9(6):1217–1226. https://doi.org/10.1127/ejm/9/6/1217

    Article  Google Scholar 

  • Morey AA et al (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia. Econ Geol 103(3):599–614. https://doi.org/10.2113/gsecongeo.103.3.599

    Article  Google Scholar 

  • Morishita Y, Shimada N, Shimada K (2018) Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geol Rev 95:79–93

    Article  Google Scholar 

  • Moslemi H, Shamsi P, Habashi F (2011) Pyrite and pyrrhotite open circuit potentials study: effects on flotation

  • Murphy R, Strongin DR (2009) Surface reactivity of pyrite and related sulfides. Surf Sci Rep 64(1):1–45. https://doi.org/10.1016/j.surfrep.2008.09.002

    Article  Google Scholar 

  • Nesbitt HW (1998) Sulfur and iron surface states on fractured pyrite surfaces. Am Miner 83(9–10):1067–1076

    Article  Google Scholar 

  • Nesbitt HW et al (2000) Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states. Am Miner 85(5–6):850–857

    Article  Google Scholar 

  • Nowak P, Krauss E, Pomianowski A (1984) The electrochemical characteristics of the galvanic corrosion of sulphide minerals in short-circuited model galvanic cells. Hydrometallurgy 12(1):95–110

    Article  Google Scholar 

  • Oberthür T et al (1997) Mineralogical siting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: genetic implications. Mineral Depos 32(1):2–15. https://doi.org/10.1007/s001260050068

    Article  Google Scholar 

  • Osseo-Asare K (1992) Semiconductor electrochemistry and hydrometallurgical dissolution processes. Hydrometallurgy 29(1–3):61–90

    Article  Google Scholar 

  • Petrie BS, Craw D, Ryan CG (2005) Geological controls on refractory ore in an orogenic gold deposit, Macraes mine, New Zealand. Mineral Depos 40(1):45–58. https://doi.org/10.1007/s00126-005-0467-y

    Article  Google Scholar 

  • Phillips GN, Powell R (2009) Formation of gold deposits: review and evaluation of the continuum model, Elsevier B.V. https://doi.org/10.1016/j.earscirev.2009.02.002

  • Pokrovski GS, Akinfiev NN, Borisova AY, Zotov AV, Kouzmanov K (2014) Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling. Geol Soc Lond Spec Publ 402:9–70

    Article  Google Scholar 

  • Pridmore DF et al (1976) The electrical resistivity of galena, pyrite, and chalcopyrite. Am Mineral 61:248–259. http://www.walkingitaly.com/radio/RADIOSITO/Sperimenta_galena_rame/galena/AM61_2481.pdf

  • Prokhorov V, Lu L (1971) Electrochemical and thermoelectric properties of pyrite as a criterion of the conditions of mineral formation. Mineral Mineral Crystallogr 115

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69(11):2781–2796

    Article  Google Scholar 

  • Renders PJ, Seward TM (1989a) The adsorption of thio gold(I) complexes by amorphous As2S3and Sb2S3at 25 and 90°C. Geochim Cosmochim Acta 53(2):255–267

    Article  Google Scholar 

  • Renders PJ, Seward TM (1989b) The stability of hydrosulphido- and sulphido-complexes of Au(I) and Ag(I) at 25°C. Geochim Cosmochim Acta 53(2):245–253

    Article  Google Scholar 

  • Rimstidt DD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67(5):873–880

    Article  Google Scholar 

  • Ryan CG (2004) Ion beam microanalysis in geoscience research. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 220:534–549

    Article  Google Scholar 

  • Ryan CG, Jamieson DN (1993) Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping. Nuclear Instrum Methods Phys Res B 77(1–4):203–214

    Article  Google Scholar 

  • SakharovaMS (1978) No Title. Geokhimiya, p 1836

  • Sakharova MS, Lobacheva IK (1978) No Title. Geokhimiya, p 1836

  • Scaini MJ, Bancroft GM (1998) Reactions of aqueous Au (super 1+) sulfide species with pyrite as a function of pH and temperature. Am Mineral 83:316–322. http://ammin.geoscienceworld.org/cgi/content/abstract/83/3-4/316.

  • Scaini MJ, Bancroft GM, Knipe SW (1998) Reactions of aqueous Au1+ sulfide species with pyrite as a function of pH and temperature. Am Miner 83(3–4):316–322

    Article  Google Scholar 

  • Schoonen MAA, Fisher NS, Wente M (1992) Gold sorption onto pyrite and goethite: a radiotracer study. Geochim Cosmochim Acta 56(5):1801–1814

    Article  Google Scholar 

  • Seward TM (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim Cosmochim Acta 37(3):379–399

    Article  Google Scholar 

  • Sharma BL, Purohit RK (1974) Theory of heterojunctions. In: Semiconductor heterojunctions, pp 1–23. http://linkinghub.elsevier.com/retrieve/pii/B9780080177472500058

  • Shchetochkin VN, Kislyakov YM, Vasil’eva EG (1995) Natural galvaniv effect when bed-oxidation ore-bearing zone forming. Geokhimiya 263–281. http://inis.iaea.org/Search/search.aspx?orig_q=RN:26065974. Accessed 13 Sept 2016.

  • Simon G, Kesler SE, Chryssoulis S (1999) Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits. Econ Geol 94(3):405–421

    Article  Google Scholar 

  • Starling A et al (1989) High-temperature hydrothermal precipitation of precious metals on the surface of pyrite. Nature 340(6231):298–300. https://doi.org/10.1038/340298a0

    Article  Google Scholar 

  • Sze, S.M. & Ng, K.K., 2007. Physics of Semiconductor Devices, 3rd Edition - Simon M. Sze, Kwok K. Ng. Physics of Semiconductor Devices, 3rd Edition.; John Wiley & Sons, Inc.; NJ, pp.164, 682. Available at: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471143235.html.

  • Tributsch H (2000) Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity. Electrochim Acta 45:4705–4716

    Article  Google Scholar 

  • Vaughan JP, Kyin A (2004) Refractory gold ores in Archaean greenstones, Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification. Mineral Mag 68(2):255–277. https://doi.org/10.1180/0026461046820186

    Article  Google Scholar 

  • Vaughan DJ, Lennie AR (1991) The iron sulfide minerals—their chemistry and role in nature. Sci Progress 75(298):371–388

    Google Scholar 

  • Vaughan DJ, Becker U, Wright K (1997) Sulphide mineral surfaces: theory and experiment. Int J Miner Process 51:1–14

    Article  Google Scholar 

  • Voisey CR, Willis D, Tomkins AG, Wilson CJL, Micklethwaite S, Salvemini F, Bougoure J, Rickard WDA (2020) Aseismic refinement of orogenic gold systems. Econ Geol 115:33–50

    Article  Google Scholar 

  • Webster JG (1986) The solubility of gold and silver in the system AuAgSO2H2O at 25°C and 1 atm. Geochim Cosmochim Acta 50(9):1837–1845

    Article  Google Scholar 

  • Widler AM, Seward TM (2002) The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces. Geochim Cosmochim Acta 66(3):383–402

    Article  Google Scholar 

  • Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5(5):281–287

    Article  Google Scholar 

  • Yang LQ, Deng J, Wang ZL, Zhang L, Goldfarb RJ, Yuan WM, Weinberg RF, Zhang RZ (2016) Thermochronologic constraints on evolution of the Linglong metamorphic core Complex: a case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China. Ore Geol Rev 72:165–178

    Article  Google Scholar 

  • Yong X, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85(3–4):543–556

    Google Scholar 

  • Zhang YN, Law M, Wu RQ (2015) Atomistic modeling of sulfur vacancy diffusion near iron pyrite surfaces. J Phys Chem C 119(44):24859–24864

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge CSIRO Minerals for financing this work and Prof Ross Large at the University of Tasmania for providing samples for analysis. We also acknowledge the Associate Editor Prof Steven Reddy and CTMP reviewer Christof Kusebauch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie S. Laird.

Additional information

Communicated by Steven Reddy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laird, J.S., Halfpenny, A., Ryan, C.G. et al. Evidence supporting micro-galvanic coupling in sulphides leads to gold deposition. Contrib Mineral Petrol 176, 25 (2021). https://doi.org/10.1007/s00410-021-01781-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01781-w

Keywords

Navigation