Skip to main content
Log in

What can we learn from REE abundances in clinopyroxene and orthopyroxene in residual mantle peridotites?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Clinopyroxene and orthopyroxene are the two major repositories of rare-earth elements (REE) in spinel peridotites. Most geochemical studies of REE in mantle samples focus on clinopyroxene. Recent advances in in situ trace element analysis have made it possible to measure REE abundance in orthopyroxene. The purpose of this study is to determine what additional information one can learn about mantle processes from REE abundances in orthopyroxene coexisting with clinopyroxene in residual spinel peridotites. To address this question, we select a group of spinel peridotite xenoliths (9 samples) and a group of abyssal peridotites (12 samples) that are considered residues of mantle melting and that have major element and REE compositions in the two pyroxenes reported in the literature. We use a disequilibrium double-porosity melting model and the Markov chain Monte Carlo method to invert melting parameters from REE abundance in the bulk sample. We then use a subsolidus reequilibration model to calculate REE redistribution between clinopyroxene and orthopyroxene at the extent of melting inferred from the bulk REE data and at the closure temperature of REE in the two pyroxenes. We compare the calculated results with those observed in clinopyroxene and orthopyroxene in the selected peridotitic samples. Results from our two-step melting followed by subsolidus reequilibration modeling show that it is more reliable to deduce melting parameters from REE abundance in the bulk peridotite than in clinopyroxene. We do not recommend the use of REE in clinopyroxene alone to infer the degree of melting experienced by the mantle xenolith. In general, HREE in clinopyroxene and LREE in orthopyroxene are more susceptible to subsolidus redistribution. The extent of redistribution depends on the modes of clinopyroxene and orthopyroxene in the sample and thermal history experienced by the peridotite. By modeling subsolidus redistribution of REE between orthopyroxene and clinopyroxene after melting, we show that it is possible to discriminate mineral mode of the starting mantle and cooling rate experienced by the peridotitic sample. We conclude that endmembers of the depleted MORB mantle and the primitive mantle are not homogeneous in mineral mode. A modally heterogeneous peridotitic starting mantle provides a simple explanation for the large variations of mineral mode observed in mantle xenoliths and abyssal peridotites. Finally, using different starting mantle compositions in our simulations, we show that composition of the primitive mantle is more suitable for modeling REE depletion in cratonic mantle xenoliths than the composition of the depleted MORB mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source of data). All calculations were performed assuming a pressure of 1.5 GPa

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agranier A, Lee CTA (2007) Quantifying trace element disequilibria in mantle xenoliths and abyssal peridotites. Earth Planet Sci Lett 257:290–298

    Article  Google Scholar 

  • Anders E, Grevsse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Bedini R, Bodinier JL (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP–MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    Article  Google Scholar 

  • Bodinier J-L, Godard M (2014) Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (ed) Treatise on geochemistry: the mantle and core, 2nd edn. Elsevier, New York, pp 103–167

    Chapter  Google Scholar 

  • Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628

    Article  Google Scholar 

  • Brey G, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Brunelli D, Seyler M (2010) Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean). Earth Planet Sci Lett 289:393–405

    Article  Google Scholar 

  • Brunelli D, Seyler M, Cipriani A, Ottolini L, Bonatti E (2006) Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema Lithospheric Section (Mid-Atlantic Ridge). J Petrol 47:745–771

    Article  Google Scholar 

  • Brunelli D, Paganelli E, Seyler M (2014) Percolation of enriched melts during incremental open-system melting in the spinel field: a REE approach to abyssal peridotites from the Southwest Indian Ridge. Geochim Cosmochim Acta 127:190–203

    Article  Google Scholar 

  • Cherniak DJ (2015) Nb and Ta diffusion in titanite. Chem Geol 413:44–50

    Article  Google Scholar 

  • Cherniak DJ, Liang Y (2007) Rare earth element diffusion in natural enstatite. Geochim Cosmochim Acta 71:1324–1340

    Article  Google Scholar 

  • D’Errico ME, Warren JM, Godard M (2016) Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge. Geochim Cosmochim Acta 174:291–312

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dygert N, Liang Y (2015) Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth Planet Sci Lett 420:151–161

    Article  Google Scholar 

  • Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J Geophys Res 97:9015–9025

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1–35

    Article  Google Scholar 

  • Harvey J, Yoshikawa M, Hammond SJ, Burton KW (2012) Deciphering the trace element characteristics in Kilbourne Hole peridotite xenoliths: melt–rock interaction and metasomatism beneath the Rio Grande Rift, SW USA. J Petrol 53:1709–1742

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petrol 150:486–504

    Article  Google Scholar 

  • Iwamori H (1994) 238U–230Th–226Ra and 235U–231Pa disequilibria produced by mantle melting with porous and channel flows. Earth Planet Sci Lett 125:1–16

    Article  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133:60–68

    Article  Google Scholar 

  • Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II Fracture Zone. J Geophys Res Solid Earth 97:9219–9241

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res Solid Earth 95:2661–2678

    Article  Google Scholar 

  • Jull M, Kelemen PB, Sims K (2002) Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochim Cosmochim Acta 66:4133–4148

    Article  Google Scholar 

  • Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans Math Phys Eng Sci 355:283–318

    Article  Google Scholar 

  • Key K, Constable S, Liu L, Pommier A (2013) Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495:499–502

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res Solid Earth 97:6885–6906

    Article  Google Scholar 

  • Lee CTA, Harbert A, Leeman WP (2007) Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt. Geochim Cosmochim Acta 71:481–496

    Article  Google Scholar 

  • Liang Y (2003) On the thermo-kinetic consequences of slab melting. Geophys Res Lett 30:2270. https://doi.org/10.1029/2003GL018969

    Article  Google Scholar 

  • Liang Y (2014) Time scales of diffusive re-equilibration in bi-mineralic systems with and without a fluid or melt phase. Geochim Cosmochim Acta 132:274–287

    Article  Google Scholar 

  • Liang Y (2020) Trace element fractionation and isotope ratio variation during melting of a spatially distributed and lithologically heterogeneous mantle. Earth Planet Sci Lett 552:116594

    Article  Google Scholar 

  • Liang Y, Elthon D (1990) Geochemistry and petrology of spinel lherzolite xenoliths from Xalapasco de La Joya, San Luis Potosi, Mexico: partial melting and mantle metasomatism. J Geophys Res 95(15):895–15877

    Google Scholar 

  • Liang Y, Liu B (2016) Simple models for disequilibrium fractional melting and batch melting with application to REE fractionation in abyssal peridotites. Geochim Cosmochim Acta 173:181–197

    Article  Google Scholar 

  • Liang Y, Peng Q (2010) Non-modal melting in an upwelling mantle column: steady-state models with applications to REE depletion in abyssal peridotites and the dynamics of melt migration in the mantle. Geochim Cosmochim Acta 74:321–339

    Article  Google Scholar 

  • Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260

    Article  Google Scholar 

  • Liu B, Liang Y (2017) An introduction of Markov chain Monte Carlo method to geochemical inverse problems: reading melting parameters from REE abundances in abyssal peridotites. Geochim Cosmochim Acta 203:216–234

    Article  Google Scholar 

  • Liu B, Liang Y (2019) Importance of permeability and deep channel network on the distribution of melt, fractionation of REE in abyssal peridotites, and U-series disequilibria in basalts beneath mid-ocean ridges: a numerical study using a 2D double-porosity model. Earth Planet Sci Lett 528:115788

    Article  Google Scholar 

  • Liu C-Z, Snow JE, Hellebrand E, Brugmann G, von der Handt A, Buchl A, Hofmann AW (2008) Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452:311–316

    Article  Google Scholar 

  • Liu J, Carlson RW, Rudnick RL, Walker RJ, Gao S, Wu F (2012) Comparative Sr–Nd–Hf–Os–Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: additional evidence for a Paleoproterozoic age. Chem Geol 332:1–14

    Google Scholar 

  • Lundstrom C (2000) Models of U-series disequilibria generation in MORB: the effects of two scales of melt porosity. Phys Earth Planet Inter 121:189–204

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McDonough WF, Stosch H-G, Ware NG (1992) Distribution of titanium and the rare earth elements between peridotitic minerals. Contrib Mineral Petrol 110:321–328

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95:285–307

    Article  Google Scholar 

  • Niu Y, Hékinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329

    Article  Google Scholar 

  • Quinn DP, Saleeby J, Ducea M, Luffi P, Asimow P (2018) Late-Cretaceous construction of the mantle lithosphere beneath the central California coast revealed by Crystal Knob xenoliths. Geochem Geophys Geosyst 19:3302–3346

    Article  Google Scholar 

  • Rampone E, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1993) Subsolidus reactions monitored by trace element partitioning: the spinel- to plagioclase-facies transition in mantle peridotites. Contrib Mineral Petrol 115:1–17

    Article  Google Scholar 

  • Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40:1009

    Article  Google Scholar 

  • Sanfilippo A, Salters V, Tribuzio R, Zanetti A (2019) Role of ancient, ultra-depleted mantle in mid-ocean-ridge magmatism. Earth Planet Sci Lett 511:89–98

    Article  Google Scholar 

  • Seyler M, Brunelli D, Toplis MJ, Mevel C (2011) Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52° E–68° E): trace element compositions of along-axis dredged peridotites. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003585

    Article  Google Scholar 

  • Shimizu N (1998) The geochemistry of olivine-hosted melt inclusions in a FAMOUS basalt ALV519-4-1. Phys Earth Planet Inter 107:183–201

    Article  Google Scholar 

  • Stosch HG (1982) Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochim Cosmochim Acta 46:793–811

    Article  Google Scholar 

  • Stracke A, Snow JE, Hellebrand E, von der Handt A, Bourdon B, Birbaum K, Günther D (2011) Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet Sci Lett 308:359–368

    Article  Google Scholar 

  • Stracke A, Genske F, Berndt J, Koornneef JM (2019) Ubiquitous ultra-depleted domains in Earth’s mantle. Nat Geosci 12:851–855

    Article  Google Scholar 

  • Sun C, Liang Y (2014) An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem Geol 372:80–91

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside; influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2002) Diffusive fractionation of trace elements during production and transport of melt in Earth’s upper mantle. Earth Planet Sci Lett 198:93–112

    Article  Google Scholar 

  • Voigt M, von der Handt A (2011) Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib Mineral Petrol 162:675–689

    Article  Google Scholar 

  • Wang C, Liang Y, Xu W (2015) On the significance of temperatures derived from major element and REE based two-pyroxene thermometers for mantle xenoliths from the North China Craton. Lithos 224:101–113

    Article  Google Scholar 

  • Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248:193–219

    Article  Google Scholar 

  • Warren JM, Shimizu N, Sakaguchi C, Dick HJB, Nakamura E (2009) An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res 114:B122023. https://doi.org/10.1029/2008JB006186

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Yang Y, Forsyth DW, Weeraratne DS (2007) Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone. Earth Planet Sci Lett 258:260–268

    Article  Google Scholar 

  • Yao L (2015) Closure temperature and closure pressure in bi-mineralic systems with applications to REE-in-two-mineral thermobarometers. Brown University, PhD thesis

Download references

Acknowledgements

We thank Daniele Brunelli, Henry Dick, Jingao Liu, and Jessica Warren for useful discussion regarding grain size in peridotites, and Suzanne Birner for helpful comments and suggestions on an earlier version of this manuscript. Thoughtful reviews from Daniele Brunelli and Elisabetta Rampone and editorial suggestions from Dante Canil helped to improve the manuscript. This work was supported by National Science Foundation Grant EAR-1852088 and the China Scholarship Council (201806010079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liang.

Additional information

Communicated by Dante Canil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendix: Governing equations and inversion method

Appendix: Governing equations and inversion method

The disequilibrium double-porosity melting model of Liang and Liu (2016) is intended for modeling trace element fractionation during concurrent melting, channelized melting extraction, and finite rate of crystal-melt chemical exchange in an upwelling steady-state melting column. In terms of the degree of melting experienced by the solid matrix (F), mass conservation equations for a trace element in the interstitial melt (\(C_{{\text{f}}}\)), residual solid (\(C_{{\text{s}}}\)), individual mineral (\(C_{{\text{s}}}^{j}\)) can be written as:

$$\varepsilon_{{{\text{cpx}}}} \left( {1 - {\mathbb{R}}} \right)F\frac{{{\text{d}}C_{{\text{f}}} }}{{{\text{d}}F}} = \varepsilon_{{{\text{cpx}}}} \left( {C_{{\text{s}}}^{p} - C_{{\text{f}}} } \right) + \mathop \sum \limits_{j = 1}^{N} w_{j} \frac{{R_{j} }}{{R_{{{\text{cpx}}}} }}\left( {C_{{\text{s}}}^{j} - k_{j} C_{{\text{f}}} } \right),$$
(8)
$$\varepsilon_{{{\text{cpx}}}} { }\left( {1 - F} \right)\frac{{{\text{d}}C_{{\text{s}}} }}{{{\text{d}}F}} = \varepsilon_{{{\text{cpx}}}} \left( {C_{{\text{s}}} - C_{{\text{s}}}^{p} } \right) - \mathop \sum \limits_{j = 1}^{N} w_{j} \frac{{R_{j} }}{{R_{{{\text{cpx}}}} }}\left( {C_{{\text{s}}}^{j} - k_{j} C_{{\text{f}}} } \right)$$
(9)
$$\varepsilon_{{{\text{cpx}}}} { }\left( {1 - F} \right)\frac{{{\text{d}}C_{{\text{s}}}^{j} }}{{{\text{d}}F}} = - \frac{{R_{j} }}{{R_{{{\text{cpx}}}} }}\left( {C_{{\text{s}}}^{j} - k_{j} C_{{\text{f}}} } \right).$$
(10)

where \(k_{j}\) is the partition coefficient between mineral j and melt for the element of interest; \({\mathbb{R}}\) is the dimensionless melt suction rate defined as the fraction of melt removed from the residual solid (to a nearby channel) relative to the amount of melt produced by melting (Iwamori 1994; Liang and Peng 2010); \(\varepsilon_{{{\text{cpx}}}}\) is the disequilibrium parameter for a trace element in cpx; \(C_{{\text{s}}}^{p}\) is the concentration of bulk solid calculated according to melting reaction; and \(w_{j}\) is the weight fraction of mineral j in residual solid. The latter three parameters are defined as follows:

$$\varepsilon_{{{\text{cpx}}}} = \frac{\Gamma }{{\rho_{{\text{s}}} \left( {1 - \phi_{{\text{f}}} } \right)R_{{{\text{cpx}}}} }}$$
(11)
$$C_{{\text{s}}}^{p} = \mathop \sum \limits_{j = 1}^{N} w_{j}^{p} C_{{\text{s}}}^{j}$$
(12)
$$w_{j} = \frac{{w_{j}^{0} - w_{j}^{p} F}}{1 - F},$$
(13)

where \(\Gamma\) is the melting rate; \(\rho_{{\text{s}}}\) is the density of the bulk solid; \(\phi_{{\text{f}}}\) is the volume fraction of the melt in the residue; \(w_{j}^{0}\) is the weight fraction of mineral j at the onset of the melting; and \(w_{j}^{p}\) is the weight fraction of mineral j participating in the melting reaction. Equations (810) can be further simplified by assuming that the interstitial melt and olivine and spinel are in local chemical equilibrium. The mass conservation equations become:

$$\begin{aligned} \left( {\varepsilon_{{{\text{cpx}}}} \left( {1 - {\mathbb{R}}} \right)F + \varepsilon_{{{\text{cpx}}}} \left( {1 - F} \right)\left( {w_{{{\text{ol}}}} k_{{{\text{ol}}}} + w_{{{\text{sp}}}} k_{{{\text{sp}}}} } \right)} \right)\frac{{{\text{d}}C_{{\text{f}}} }}{{{\text{d}}F}} & = \varepsilon_{{{\text{cpx}}}} \left( {C_{{\text{s}}}^{p} - C_{{\text{f}}} } \right) \\ & \quad + w_{{{\text{cpx}}}} \left( {C_{{\text{s}}}^{{{\text{cpx}}}} - k_{{{\text{cpx}}}} C_{{\text{f}}} } \right) + w_{{{\text{opx}}}} \frac{{R_{{{\text{opx}}}} }}{{R_{{{\text{cpx}}}} }}\left( {C_{{\text{s}}}^{{{\text{opx}}}} - k_{{{\text{opx}}}} C_{{\text{f}}} } \right) \\ \end{aligned}$$
(14)
$$\varepsilon_{{{\text{cpx}}}} \left( {1 - F} \right)\frac{{{\text{d}}C_{{\text{s}}}^{{{\text{cpx}}}} }}{{{\text{d}}F}} = - \left( {C_{{\text{s}}}^{{{\text{cpx}}}} - k_{{{\text{cpx}}}} C_{{\text{f}}} } \right)$$
(15)
$$\varepsilon_{{{\text{cpx}}}} \left( {1 - F} \right)\frac{{{\text{d}}C_{{\text{s}}}^{{{\text{opx}}}} }}{{{\text{d}}F}} = - \frac{{R_{{{\text{opx}}}} }}{{R_{{{\text{cpx}}}} }}\left( {C_{{\text{s}}}^{{{\text{opx}}}} - k_{{{\text{opx}}}} C_{{\text{f}}} } \right)$$
(16)
$$C_{{\text{s}}}^{p} = w_{{{\text{cpx}}}}^{p} C_{{\text{s}}}^{{{\text{cpx}}}} + w_{{{\text{opx}}}}^{p} C_{{\text{s}}}^{{{\text{opx}}}} + w_{{{\text{ol}}}}^{p} k_{{{\text{ol}}}} C_{{\text{f}}} + w_{{{\text{sp}}}}^{p} k_{{{\text{sp}}}} C_{{\text{f}}} .$$
(17)

Concentration of REE in the bulk residue can be calculated using the expression:

$$C_{{\text{s}}} = \sum w_{j} C_{{\text{s}}}^{j} = w_{{{\text{cpx}}}} C_{{\text{s}}}^{{{\text{cpx}}}} + w_{{{\text{opx}}}} C_{{\text{s}}}^{{{\text{opx}}}} + w_{{{\text{ol}}}} k_{{{\text{ol}}}} C_{{\text{f}}} + w_{{{\text{sp}}}} k_{{{\text{sp}}}} C_{{\text{f}}} .$$
(18)

Equations (1416) are closed by the following boundary conditions at the bottom of the melting column (F = 0):

$$C_{{\text{f}}} \left( 0 \right) = \frac{{\varepsilon_{{{\text{cpx}}}} { }k_{p} + k_{0} }}{{k_{0} \left( {\varepsilon_{{{\text{cpx}}}} + k_{0} } \right)}}C_{{\text{s}}}^{0}$$
(19)
$$C_{{\text{s}}}^{{{\text{cpx}}}} (0) = \frac{{k_{{{\text{cpx}}}} }}{{k_{0} }} C_{{\text{s}}}^{0}$$
(20)
$$C_{{\text{s}}}^{{{\text{opx}}}} \left( 0 \right) = \frac{{k_{{{\text{opx}}}} }}{{k_{0} }}C_{{\text{s}}}^{0} .$$
(21)

where \(k_{0}\) is the bulk solid–melt partition coefficient at the onset of melting; and \(k_{p}\) is the bulk solid–melt partition coefficient according to the melting reaction. Equation (19) is based on the analysis of Liang and Liu (2016). Equations (1416) are a set of coupled ordinary differential equations and can be solved numerically using standard methods.

The disequilibrium double-porosity melting model consists of three coupled nonlinear ordinary differential equations and one algebraic equation for spatial variations of a trace element in interstitial melt, cpx, opx, and bulk residue (Eqs. 1417). They have no analytical solutions for the problem considered in this study. Hence, we cannot use nonlinear least squares analysis to invert melting parameters as we did for REE in cpx (Liang and Peng 2010; Liang and Liu 2016). To get around this difficulty, we use Markov chain Monte Carlo (MCMC) method to invert the melting parameters F, \(\varepsilon_{{{\text{cpx}}}}^{1300}\), and \({\mathbb{R}}\) from REE + Y concentrations in the bulk sample. MCMC methods are a class of powerful statistical tools for solving nonlinear inverse problems in Bayesian analysis (e.g., Sambridge and Mosegaard 2002). Liu and Liang (2017) used MCMC to invert melting parameters from REE abundance in residual cpx in abyssal peridotites. The present work follows the inversion procedure detailed in their study. To facilitate MCMC inversion, we set bounds for the disequilibrium parameter \(\varepsilon_{{{\text{cpx}}}}^{1300}\) to [0, 0.15] and the melt suction rate \({\mathbb{R}}\) to [0, 1], based on previous inversion results using similar model or method (Lundstrom 2000; Liang and Peng 2010; Liang and Liu 2016; Liu and Liang 2017). We solve Eqs. (1421) for each simulation using the routine ODEIENT in Python. We run 10,000–50,000 simulations for each sample to ensure convergence and use the result to calculate best fitting parameters and uncertainties. The best fitting parameters are then used to calculate REE abundances in the bulk sample, residual cpx and opx, and chemically re-equilibrated cpx and opx at closure temperatures in the two pyroxenes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Ji, Z. & Liu, B. What can we learn from REE abundances in clinopyroxene and orthopyroxene in residual mantle peridotites?. Contrib Mineral Petrol 176, 24 (2021). https://doi.org/10.1007/s00410-021-01780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01780-x

Keywords

Navigation