Skip to main content
Log in

Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present major and trace element as well as Sr, Nd, and Hf isotope data on a suite of 87 plutonic rock samples from 27 felsic crustal intrusions in seven blocks of the Oman ophiolite. The rock compositions of the sample suite including associated more mafic rocks range from 48 to 79 wt% SiO2, i.e. from gabbros to tonalites. The samples are grouped into a Ti-rich and relatively light rare earth element (LREE)-enriched P1 group [(Ce/Yb) N  > 0.7] resembling the early V1 lavas, and a Ti-poor and LREE-depleted P2 group [(Ce/Yb) N  < 0.7] resembling the late-stage V2 lavas. Based on the geochemical differences and in agreement with previous structural and petrographic models, we define phase 1 (P1) and phase 2 (P2) plutonic rocks. Felsic magmas in both groups formed by extensive fractional crystallization of olivine, clinopyroxene, plagioclase, apatite, and Ti-magnetite from mafic melts. The incompatible element compositions of P1 rocks overlap with those from mid-ocean ridges but have higher Ba/Nb and Th/Nb trending towards the P2 rock compositions and indicating an influence of a subducting slab. The P2 rocks formed from a more depleted mantle source but show a more pronounced slab signature. These rocks also occur in the southern blocks (with the exception of the Tayin block) of the Oman ophiolite implying that the entire ophiolite formed above a subducting slab. Initial Nd and Hf isotope compositions suggest an Indian-MORB-type mantle source for the Oman ophiolite magmas. Isotope compositions and high Th/Nb in some P2 rocks indicate mixing of a melt from subducted sediment into this mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi Y, Miyashita S (2003) Geology and petrology of the plutonic complexes in the Wadi Fizh area: multiple magmatic events and segment structure in the northern Oman ophiolite. Geochem Geophys Geosyst. doi:10.1029/2001GC000272

    Google Scholar 

  • Alabaster T, Pearce JA, Malpas J (1982) The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib Mineral Petrol 81:168–183

    Article  Google Scholar 

  • Amri I, Benoit M, Ceuleneer G (1996) Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleo-spreading structure in the Oman ophiolite. Earth Planet Sci Lett 139:177–194

    Article  Google Scholar 

  • Amri I, Ceuleneer G, Benoit M, Python M, Puga E, Targuisti K (2007) Genesis of granitoids by interaction between mantle peridotites and hydrothermal fludis in oceanic spreding setting in the Oman Ophiolite. Geogaceta 42:23–26

    Google Scholar 

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B—implications for seawater–crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst. doi:10.1029/2002gc000419

    Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401

    Article  Google Scholar 

  • Benoit M, Ceuleneer G, Polvé M (1999) The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature 402:514–517

    Article  Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarede F (1997) Separation of Hf and Lu for high-precision isotope analyses of rock samples by magnetic sector-multiple collector ICP-MS. Contrib Mineral Petrol 127:248–260

    Article  Google Scholar 

  • Bosch D, Jamais M, Boudier F, Nicolas A, Dautria J-M, Agrinier P (2004) Deep and high-temperature hydrothermal circulation in the Oman ophiolite—petrological and isotopic evidence. J Petrol 45:1181–1208

    Article  Google Scholar 

  • Boudier F, Ceuleneer G, Nicolas A (1988) Shear zones, thrusts and related magmatism in the Oman ophiolite: initiation of thrusting on an oceanic ridge. Tectonophysics 151:275–296

    Article  Google Scholar 

  • Bouvier AS, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Letters 273:48–57

    Article  Google Scholar 

  • Briqueu L, Mével C, Boudier F (1991) Sr, Nd and Pb isotopic constraints in the genesis of a calc-alkaline plutonic suite in Oman ophiolite related to the obduction process. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Ministry of Petroleum and Minerals, Sultanate of Oman, pp 517–542

    Chapter  Google Scholar 

  • Brophy JG (2008) A study of rare earth element (REE)-SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Mineral Petrol 156:337–357

    Article  Google Scholar 

  • Brophy JG (2009) La–SiO2 and Yb–SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Mineral Petrol 158:99–111

    Article  Google Scholar 

  • Brophy JG, Pu X (2012) Rare earth element-SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New brunswick, Canada: a field evaluation of some model predictions. Contrib Mineral Petrol 164:191–204

    Article  Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Article  Google Scholar 

  • Coleman RG (1977) Ophiolites. Springer, Berlin

    Book  Google Scholar 

  • Coleman RG (1981) Tectonic setting for ophiolite obduction in Oman. J Geophys Res 86:2497–2508

    Article  Google Scholar 

  • Coleman RG, Donato MM (1979) Oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 149–168

    Chapter  Google Scholar 

  • Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophys Res 80:1099–1108. doi:10.1029/JB080i008p01099

    Article  Google Scholar 

  • Coogan LA (2007) The lower oceanic crust. In: Holland H, Turekian K (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Cowan RJ, Searle MP, Waters DJ (2014) Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes. In: Rollinson HR, Searle MP, Abbasi IA, Al-Lazki A, Kindi MHA (eds) Tectonic evolution of the Oman Mountains, vol 392., Geological societyLondon, London, pp 155–175

    Google Scholar 

  • Cox J, Searle M, Pedersen R (1999) The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates: field relationships, geochemistry and Sr/Nd isotope systematics. Contrib Mineral Petrol 137:267–287

    Article  Google Scholar 

  • Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Wilcock WSD, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230

    Article  Google Scholar 

  • Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Article  Google Scholar 

  • Einaudi F, Godard M, Pezard P, Cochemé J-J, Coulon C, Brewer T, Harvey P (2003) Magmatic cycles and formation of the upper oceanic crust at spreading centers: geochemical study of a continuous extrusive section in the Oman ophiolite. Geochem Geophys Geosyst. doi:10.1029/2002GC000362

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. Am Geophys Union Geophys Monogr 138:23–45. doi:10.1029/138gm03

    Google Scholar 

  • Erdmann M, Fischer LA, France L, Zhang C, Godard M, Koepke J (2015) Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study. Contrib Mineral Petrol. doi:10.1007/s00410-015-1136-5

    Google Scholar 

  • Ernewein M, Pflumio C, Whitechurch H (1988) The death of an accretion zone as evidenced by the magmatic history of the Sumail ophiolite (Oman). Tectonophysics 151:247–274

    Article  Google Scholar 

  • France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Mineral Petrol 160:683–704

    Article  Google Scholar 

  • France L, Koepke J, MacLeod CJ, Ildefonse B, Godard M, Deloule E (2014) Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202–203:120–137

    Article  Google Scholar 

  • Freund S, Beier C, Krumm S, Haase KM (2013) Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallization. Chem Geol 347:271–283

    Article  Google Scholar 

  • Freund S, Haase KM, Keith M, Beier C, Garbe-Schönberg D (2014) Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contrib Mineral Petrol. doi:10.1007/s00410-014-0978-6

    Google Scholar 

  • Gillis KM (2008) The roof of an axial magma chamber: a hornfelsic heat exchanger. Geology 36:299–302

    Article  Google Scholar 

  • Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43:2075–2095

    Article  Google Scholar 

  • Gillis KM, Robinson PT (1988) Distribution of alteration zones in the upper oceanic crust. Geology 16:262–266

    Article  Google Scholar 

  • Godard M, Dautria J-M, Perrin M (2003) Geochemical variability of the Oman ophiolite lavas: relationship with spatial distribution and paleomagnetic directions. Geochem Geophys Geosyst. doi:10.1029/2002GC000452

    Google Scholar 

  • Goodenough KM, Styles MT, Schofield D, Thomas RJ, Crowley QC, Lilly RM, McKervey J, Stephenson D, Carney JN (2010) Architecture of the Oman–UAE ophiolite: evidence for a multi-phase magmatic history. Arab J Geosci 3:439–458

    Article  Google Scholar 

  • Goodenough KM, Thomas RJ, Styles MT, Schofield DI, MacLeod CJ (2014) Records of ocean growth and destruction in the Oman–UAE ophiolite. Elements 10:109–114

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for ð18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow spreading ridge: constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochem Geophys Geosyst. doi:10.1029/2008gc002063

    Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like d18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, Kozdon R, Valley JW (2013) Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179:48–66

    Article  Google Scholar 

  • Haase KM (2002) Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific): a case study of plume-ridge interaction. Chem Geol 182:335–355

    Article  Google Scholar 

  • Haase KM, Freund S, Koepke J, Hauff F, Erdmann M (2015) Melts of sediments in the mantle wedge of the Oman ophiolite. Geology 43:275–278

    Article  Google Scholar 

  • Hanghoj K, Kelemen PB, Hassler D, Godard M (2010) Composition and genesis of depleted mantle peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and trace element geochemistry, and Os isotope and PGE systematics. J Petrol 51:201–227

    Article  Google Scholar 

  • Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: implications for thermal condition during transition from spreading ridge to arc. Geology 30:899–902

    Article  Google Scholar 

  • Juteau T, Ernewein M, Reuber I, Whitechurch H, Dahl R (1988) Duality of magmatism in the plutonic sequence of the Sumail Nappe, Oman. Tectonophysics 151:107–135

    Article  Google Scholar 

  • Kawahata H, Nohara M, Ishizuka H, Hasebe S, Chiba H (2001) Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. J Geophys Res 106(B6):11083. doi:10.1029/2000jb900456

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 146:414–432

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153:67–84

    Article  Google Scholar 

  • Kusano Y, Adachi Y, Miyashita S, Umino S (2012) Lava accretion system around mid-ocean ridges: volcanic stratigraphy in the Wadi Fizh area, northern Oman ophiolite. Geochem Geophys Geosyst. doi:10.1029/2011GC004006

    Google Scholar 

  • Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc Lond 148:825–834

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst. doi:10.1029/1999GC000026

    Google Scholar 

  • Lippard SJ, Shelton AW, Gass IG (1986) The ophiolite of northern Oman. Blackwell, Oxford

    Google Scholar 

  • Lissenberg CJ, Rioux M, Shimizu N, Bowring SA, Mével C (2009) Zircon dating of oceanic crustal accretion. Science 323:1048–1050

    Article  Google Scholar 

  • MacLeod CJ, Yaouancq G (2000) A fossil melt lens in the Oman ophiolite: implications for magma chamber processes at fast spreading ridges. Earth Planet Sci Lett 176:357–373

    Article  Google Scholar 

  • MacLeod CJ, Lissenberg CJ, Bibby LE (2013) “Moist MORB” axial magmatism in the Oman ophiolite: the evidence against a mid-ocean ridge origin. Geology 41:459–462

    Article  Google Scholar 

  • Mahoney JJ, Frei R, Tejada MLG, Mo XX, Leat PT, Nägler TF (1998) Tracing the Indian Ocean mantle domain through time: isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J Petrol 39:1285–1306

    Article  Google Scholar 

  • Marjanovic M, Carbotte SM, Carton H, Nedimovic MR, Mutter JC, Canales JP (2014) A multi-sill magma plumbing system beneath the axis of the East Pacific Rise. Nat Geosci 7:825–829

    Article  Google Scholar 

  • Meurer WP, Gee JS (2002) Evidence for the protracted construction of slow-spread oceanic crust by small magmatic injections. Earth Planet Sci Lett 201:45–55

    Article  Google Scholar 

  • Moghadam HS, Stern RJ, Kimura J-I, Hirahara Y, Senda R, Miyazaki T (2012) Hd–Nd isotope constraints on the origin of Dehshir Ophiolite, Central Iran. Isl Arc 21:202–214

    Article  Google Scholar 

  • Nicolas A, Reuber I, Benn K (1988) A new magma chamber model based on structural studies in the Oman ophiolite. Tectonophysics 151:87–105

    Article  Google Scholar 

  • Nicolas A, Boudier F, Ildefonse B, Ball E (2000a) Accretion of Oman and United Arab Emirates ophiolite—discussion of a new structural map. Mar Geophys Res 21:147–179

    Article  Google Scholar 

  • Nicolas A, Ildefonse B, Boudier F, Lenoir X, Ismail WB (2000b) Dike distribution in the Oman–United Arab Emirates ophiolite. Mar Geophys Res 21:269–287

    Article  Google Scholar 

  • Niu Y, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet Sci Lett 148:471–483

    Article  Google Scholar 

  • Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem Geol 149:211–233

    Article  Google Scholar 

  • Pallister JS (1981) Structure of the sheeted dyke complex of the Samail ophiolite near Ibra, Oman. J Geophys Res 86:2661–2672

    Article  Google Scholar 

  • Pearce JA (2003) Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought, vol 373. Geological Society of America Special Papers, Boulder, pp 269–293

    Chapter  Google Scholar 

  • Pearce JA, Alabaster T, Shelton AW, Searle MP (1981) The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philos Trans R Soc Lond A300:299–317

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144

    Article  Google Scholar 

  • Peters T, Kamber BS (1994) Peraluminous potassium-rich granitoids in the Semail ophiolite. Contrib Mineral Petrol 118:229–238

    Article  Google Scholar 

  • Phipps Morgan J, Harding A, Orcutt J, Kent G, Chen YJ (1994) An observational and theoretical synthesis of magma chamber geometry and crustal genesis along a mid-ocean ridge spreading center. In: Ryan MP (ed) Magmatic systems. Academic Press, San Diego, pp 139–178

    Chapter  Google Scholar 

  • Python M, Ceuleneer G (2003) Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochem Geophys Geosyst. doi:10.1029/2002gc000354

    Google Scholar 

  • Rioux M, Bowring S, Kelemen PB, Gordon S, Dudas F, Miller R (2012a) Rapid crustal accretion and magma assimilation in the Oman–U.A.E. ophiolite: high precision U–Pb zircon geochronology of the gabbroic crust. J Geophys Res. doi:10.1029/2012JB009273

    Google Scholar 

  • Rioux M, Lissenberg CJ, McLean NM, Bowring SA, MacLeod CJ, Hellebrand E, Shimizu N (2012b) Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise. Nat Geosci 5:275–278. doi:10.1038/ngeo1378

    Article  Google Scholar 

  • Rioux M, Bowring S, Kelemen PB, Gordon S, Miller R, Dudas F (2013) Tectonic development of the Samail ophiolite: high precision U–Pb zircon geochronology and Sm–Nd isotopic constraints on crustal growth and emplacement. J Geophys Res 118:2085–2101. doi:10.1002/jgrb.50139

    Article  Google Scholar 

  • Rollinson HR (2008) Ophiolitic trondhjemites: a possible analogue for Hadean felsic ‘crust’. Terra Nova 20:364–369

    Article  Google Scholar 

  • Rollinson HR (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112:603–614

    Article  Google Scholar 

  • Rollinson H (2015) Slab and sediment melting during subduction initiation: granitoid dykes from the mantle section of the Oman ophiolite. Contrib Mineral Petrol. doi:10.1007/s00410-015-1177-9

    Google Scholar 

  • Schulz R, Klemd R, Brätz H (2006) Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim Cosmochim Acta 70:697–710

    Article  Google Scholar 

  • Stakes DS, Taylor HP (2003) Oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulphide deposits. In: Dilek Y, Robinson PT (eds) Ophiolites in Earth history, vol 218. Geological Society Special Publications, London, pp 315–351

    Google Scholar 

  • Tilton GR, Hopson CA, Wright JE (1981) Uranium–lead isotopic ages of the Semail ophiolite, Oman, with applications to Tethyan ocean ridge tectonics. J Geophys Res 86:2763–2776

    Article  Google Scholar 

  • Tsuchiya N, Shibata T, Yoshikawa M, Adachi Y, Miyashita S, Adachi T, Nakano N, Osanai Y (2013) Petrology of Lasail plutonic complex, northern Oman ophiolite, Oman: an example of arc-like magmatism associated with ophiolite detachment. Lithos 156–159:120–138

    Article  Google Scholar 

  • Umino S, Miyashita S, Hotta F, Adachi Y (2003) Along-strike variation if the sheeted dike complex in the Oman Ophiolite: insights into subaxial ridge segment structures and the magma plumbing system. Geochem Geophys Geosyst. doi:10.1029/2001GC000233

    Google Scholar 

  • Wanless VD, Shaw AM (2012) Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat Geosci 5:651–655

    Article  Google Scholar 

  • Wanless VD, Perfit MR, Ridley WI, Klein EM (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51:2377–2410

    Article  Google Scholar 

  • Warren CJ, Parrish RR, Searle MP, Waters DJ (2003) Dating the subducion of the Arabian continental margin beneath the Semail ophiolite, Oman. Geology 31:889–892

    Article  Google Scholar 

  • Warren CJ, Parrish RR, Waters DJ, Searle MP (2005) Dating the geologic history of Oman’s Semail ophiolite: insights from U–Pb geochronology. Contrib Mineral Petrol 150:403–422

    Article  Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for `conservative` element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Article  Google Scholar 

  • Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdottir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5:242–250. doi:10.1038/NGEO1428

    Article  Google Scholar 

  • Yamasaki T, Maeda J, Mizuta T (2006) Geochemical evidence in clinopyroxenes from gabbroic sequence for two distinct magmatisms in the Oman ophiolite. Earth Planet Sci Lett 251:52–65

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the help of H. Brätz and R. Klemd (both GeoZentrum Nordbayern) during trace element analyses. We thank A. Richter for patient support with electron microprobe analyses and S. Hauff (GEOMAR) for the Hf isotope analysis. C. Weinzierl is thanked for his generous helpful corrective advice. We thank the Director General of Minerals, Ministry of Commerce and Industry of the Sultanate of Oman, for allowing us to conduct field work in the Sultanate of Oman. S. Freund thanks L. Pflug for inspiring discussions and critical questions. S. Freund was funded by DFG grant HA2568/21. Constructive reviews by G. Ceuleneer, M. Rioux and the editor O. Müntener helped to significantly improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten M. Haase.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haase, K.M., Freund, S., Beier, C. et al. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contrib Mineral Petrol 171, 46 (2016). https://doi.org/10.1007/s00410-016-1261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1261-9

Keywords

Navigation