Skip to main content

Advertisement

Log in

Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

New experimental data on the solubility of lithium (Li) at spodumene (LiAlSi2O6) and petalite (LiAlSi4O10) saturation at 500 MPa and 550–750 °C reveal evidence for lithium supersaturation of pegmatite-forming melts before the formation of Li-aluminosilicates. The degree of Li enrichment in granitic melts can reach ~11,000 ppm above the saturation value before the crystallization of Li-aluminosilicate minerals at lower temperatures. Comparison of the experimental results with the spodumene-rich Moblan pegmatite (Quebec) is consistent with extreme Li enrichment of the pegmatite-forming melt prior to emplacement, which cannot be explained with equilibrium crystallization of Li-aluminosilicates from a common granitic melt. The results of this study support the model of disequilibrium fractional crystallization through liquidus undercooling as the most plausible mechanism for the generation of such Li-rich ore resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baker DR (1998) The escape of pegmatite dikes from granitic plutons: constraints from new models of viscosity and dike propagation. Can Mineral 36:255–263

    Google Scholar 

  • Baker DR (2004) Piston–cylinder calibration at 400 to 500 MPa: a comparison of using water solubility in albite melt and NaCl melting. Am Mineral 89:1553–1556

    Google Scholar 

  • Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth-Sci Rev 114:298–324

    Article  Google Scholar 

  • Bartels A, Holtz F, Linnen RL (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. Am Mineral 95:537–544

    Article  Google Scholar 

  • Bartels A, Vetere F, Holtz F, Behrens H, Linnen RL (2011) Viscosity of flux-rich pegmatitic melts. Contrib Mineral Petrol 162:51–60

    Article  Google Scholar 

  • Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of granitic pegmatites. Econ Geol Monogr 2

  • Černý P (1982) Petrogenesis of granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry, Mineral Assoc Can, Short Course Handbook 8, pp 405–461

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Che XD, Linnen RL, Wang RC, Aseri A, Thibault Y (2013) Tungsten solubility in evolved granitic melts: an evaluation of magmatic wolframite. Geochim Cosmochim Acta 106:84–98

    Article  Google Scholar 

  • Dingwell DB, Romano C, Hess KU (1996) The effect of water on the viscosity of a haplogranitic melt under P–T–X conditions relevant to silicic volcanism. Contrib Mineral Petrol 124:19–28

    Article  Google Scholar 

  • Evensen JM, London D, Wendlandt RF (1999) Solubility and stability of beryl in granitic melts. Am Mineral 84:733–745

    Google Scholar 

  • Glyuk DS, Trufanova LG (1977) Melting at 1000 kg/cm2 in a granite–H2O system with the addition of HF, HCl, and Li, Na, and K fluorides, chlorides, and hydroxides. Geochem Intern 14:28–36

    Google Scholar 

  • Grosjean C, Miranda PH, Perrin M, Poggi P (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735–1744

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66–72

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Heinrich EW (1953) Zoning in pegmatite districts. Am Mineral 38:68–87

    Google Scholar 

  • Hess PC (1995) Thermodynamic mixing properties and the structure of silicate melts. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and properties of silicate melts. Mineral Soc Am, Washington, DC, Reviews in Mineralogy 32, pp 145–190

  • Hess KU, Dingwell DB, Webb SL (1995) The influence of excess alkalis on the viscosity of a haplogranitic melt. Am Mineral 80:297–304

    Google Scholar 

  • Holloway JR, Wood BJ (1988) Simulating the earth: experimental geochemistry. Unwin Hyman Ltd, London

    Book  Google Scholar 

  • Hudon P, Baker DR (2002a) The nature of phase separation in binary oxide melts and glasses: I. Silicate systems. J Non-Cryst Solids 303:299–345

    Article  Google Scholar 

  • Hudon P, Baker DR (2002b) The nature of phase separation in binary oxide melts and glasses: II. Selective solution mechanism. J Non-Cryst Solids 303:346–353

    Article  Google Scholar 

  • Hudon P, Baker DR, Toft PB (1994) A high-temperature assembly for 1.91-cm (3/4-in.) piston cylinder apparatus. Am Mineral 79:145–147

    Google Scholar 

  • Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev 48:55–69

    Article  Google Scholar 

  • Lentz DR, Fowler AD (1992) A dynamic model for graphic quartz–feldspar intergrowths in granitic pegmatites in the southwestern Grenville Province. Am Mineral 30:571–585

    Google Scholar 

  • Linnen RL (1998) The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites. Econ Geol 93:1013–1025

    Article  Google Scholar 

  • Linnen RL, Van Lichtervelde M, Černý P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280

    Article  Google Scholar 

  • London D (1984) Experimental phase equilibria in the system LiAlSiO4–SiO2–H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69:995–1004

    Google Scholar 

  • London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Mineral 30:499–540

    Google Scholar 

  • London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281–303

    Article  Google Scholar 

  • London D (2008) Pegmatites. Can Mineral, Special Publication 10, Mineralogical Association of Canada

  • London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697–724

    Article  Google Scholar 

  • London D, Burt DM (1982) Lithium aluminosilicate occurrences in pegmatites and the lithium aluminosilicate phase diagram. Am Mineral 67:483–493

    Google Scholar 

  • London D, Morgan GBVI, Icenhower J (1998) Stability and solubility of pollucite in the granite system. Can Mineral 36:497–510

    Google Scholar 

  • Longerich HP, Jackson SE, Gunther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Article  Google Scholar 

  • Maneta V, Baker DR (2014) Exploring the effect of lithium on pegmatitic textures: an experimental study. Am Mineral 99:1383–1403

    Article  Google Scholar 

  • Martin JS (1983) An experimental study of the effects of lithium on the granite system. Proc Ussher Soc 5:417–420

    Google Scholar 

  • Morgan GBVI, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81:1176–1185

    Google Scholar 

  • Morgan GBVI, London D (2005) Phosphorus distribution between potassic alkali feldspar and metaluminous haplogranite liquid at 200 MPa (H2O): the effect of undercooling on crystal–liquid systematics. Contrib Mineral Petrol 150:456–471

    Article  Google Scholar 

  • Munoz JL (1969) Stability relations of LiAlSi2O6 at high pressures. Mineral Soc Am Spec Pap 2:203–209

    Google Scholar 

  • Munoz JL (1971) Hydrothermal stability relations of synthetic lepidolite. Am Mineral 56:2069–2087

    Google Scholar 

  • Partington GA, McNaughton NJ, Williams IS (1995) A review of the geology, mineralization and geochronology of the Greenbushes pegmatite, Western Australia. Econ Geol 90:616–635

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Article  Google Scholar 

  • Perilya Limited (2011) Moblan lithium project—significant increase in mineral resource. May 31 2011 ASX and media release, http://www.perilya.com.au/articles/mineral-resource-at-moblan/May_2011_-_Moblan_Resource_Update_Final.pdf

  • Pichavant M, Montel JM, Richard LR (1992) Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison–Watson model. Geochim Cosmochim Acta 56:3855–3861

    Article  Google Scholar 

  • Potter EG, Taylor RP, Jones PC, Lalonde AE, Pearse GHK, Rowe R (2009) Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, Opatica subprovince, Quebec, Canada. Can Mineral 47:337–349

    Article  Google Scholar 

  • Romano C, Poe B, Mincione V, Hess KU, Dingwell D (2001) The viscosities of dry and hydrous XAlSi3O8 (X = Li, Na, K, Ca0.5, Mg0.5) melts. Chem Geol 174:115–132

    Article  Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Article  Google Scholar 

  • Sirbescu MLC, Nabelek PI (2003) Crustal melts below 400°C. Geology 31:685–688

    Article  Google Scholar 

  • Sirbescu MLC, Hartwick EE, Student JJ (2008) Rapid crystallization of the Animikie Red Ace Pegmatite, Florence county, northeastern Wisconcin: inclusion microthermometry and conductive-cooling modeling. Contrib Mineral Petrol 156:289–305

    Article  Google Scholar 

  • Stewart DB (1960) The system LiAlSiO4–NaAlSi3O8–H2O at 2000 bars. Int Geol Congr XXI 17:15–30

    Google Scholar 

  • Stewart DB (1978) Petrogenesis of lithium-rich pegmatites. Am Mineral 63:970–980

    Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappel BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Van Lichtervelde M, Holtz F, Hanchar JM (2010) Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contrib Mineral Petrol 160:17–32

    Article  Google Scholar 

  • Vaughan DEW (1964) The crystallization ranges of the Spruce Pine and Harding pegmatites. Dissertation, Pennsylvania State University

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31

    Article  Google Scholar 

  • Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization dynamics of shallow level pegmatite–aplite dikes, San Diego County, California. Am Mineral 84:708–717

    Google Scholar 

  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma mass spectrometry. J Geostand Geoanal Res 31:331–343

    Google Scholar 

  • Wyllie PJ, Tuttle OF (1964) Experimental investigation of silicate systems containing two volatile components. Part III. The effects of SO3, P2O5, HCl and Li2O, in addition to H2O, on the melting temperature of albite and granite. Am J Sci 262:930–939

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Bruce Watson for kindly providing the LCO starting material as well as the Mineralogy Section of the Canadian Museum of Nature and Kim Tait from the Royal Ontario Museum for supplying the crystals used in the experiments. We also greatly appreciate the help of Lang Shi for EMPA and André Poirier for LA-ICP-MS analyses. Additionally, we thank Martin Jones from Perilya and Yvon Trudeau from SOQUEM for providing access to core samples from the Moblan pegmatite, and Joanie Béland from SOQUEM for providing the detailed core logs and geological information. Lastly, we wish to acknowledge Alexander Bartels and an anonymous reviewer for their helpful comments on the manuscript. The present study was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to D.R. Baker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Maneta.

Additional information

Communicated by Gordon Moore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maneta, V., Baker, D.R. & Minarik, W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contrib Mineral Petrol 170, 4 (2015). https://doi.org/10.1007/s00410-015-1158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1158-z

Keywords

Navigation