Skip to main content
Log in

Rare earth element evolution and migration in plagiogranites: a record preserved in epidote and allanite of the Troodos ophiolite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Plagiogranites from the Troodos ophiolite in Cyprus are occasionally epidotised, either partially or completely. Epidotisation phenomena include replacement of pre-existing minerals and filling of miarolitic cavities. In addition to epidote, miarolites in one plagiogranite body (located near the village of Spilia) contain coexisting ferriallanite-(Ce) and allanite-(Y). Textural and geochemical evidence indicates that late-stage REE-enriched granitic melt facilitated crystallisation of magmatic ferriallanite-(Ce). High REE contents persisted after fluid exsolution, causing crystallisation of allanite-(Y) from hydrothermal fluids in the miarolites. The REE pattern of the hydrothermal allanite-(Y) is characterised by LREE and Eu depletion, similar to the parent plagiogranitic magma. As allanite had sequestered most of the REE in the fluid, epidote took over as the principle hydrothermal mineral. Epidote in Troodos plagiogranites records a fluid evolutionary trend beginning with REE-rich–Eu-depleted similar to allanite-(Y) and gradually transforming into the REE-depleted–Eu-enriched pattern prevalent throughout ‘conventional’ sub-seafloor fluids. A comparison of allanite-bearing and allanite-absent plagiogranites from the same locality suggests that REE-bearing fluids migrated from the plagiogranites. Similar fluid evolution trends observed in diabase-hosted epidote, located adjacent to a large plagiogranite body, suggest influx of plagiogranite-derived REE-bearing fluids. Epidotisation in oceanic settings is usually considered to be the result of alteration by high fluxes of seawater-derived hydrothermal fluids. Although epidotisation by magmatic fluids has been suggested to occur in plagiogranites, our study shows that this autometasomatic process is the dominant mechanism by which epidosites form in plagiogranites. Furthermore, epidotisation of diabase has been attributed solely to seawater-derived fluids, but we show that it is possible for diabase-hosted epidosites to form by migration of plagiogranite-derived fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allen DE, Seyfried WE Jr (2005) REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochim Cosmochim Acta 69(3):675–683. doi:10.1016/j.gca.2004.07.016

    Article  Google Scholar 

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Gieré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18(5):551–567. doi:10.1127/0935-1221/2006/0018-0551

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative Electron Microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4(3):177–200

    Google Scholar 

  • Banerjee NR, Gillis KM (2001) Hydrothermal alteration in a modern suprasubduction zone: the Tonga forearc crust. J Geophys Res 106(B10):21,737–21,750. doi:10.1029/2001JB000335

    Article  Google Scholar 

  • Banerjee NR, Gillis KM, Muehlenbachs K (2000) Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology 28(2):151–154. doi:10.1130/0091-7613(2000)28<151:DOEIAM>2.0.CO;2

    Article  Google Scholar 

  • Banks DA, Yardley BWD, Campbell AR, Jarvis KE (1994) REE composition of an aqueous magmatic fluid: a fluid inclusion study from the Capitan Pluton, New Mexico, USA. Chem Geol 113:259–272. doi:10.1016/0009-2541(94)90070-1

    Article  Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230. doi:10.1016/0009-2541(91)90115-8

    Article  Google Scholar 

  • Bettison-Varga L, Schiffman P, Janecky DR (1995) Fluid-rock interaction in the hydrothermal upflow zone of the Solea graben, Troodos ophiolite, Cyprus. In: Schiffman P, Day HW (eds) Low-grade metamorphism of mafic rocks, vol 296, Geol Soc Am Spec Paper, pp 81–100. doi:10.1130/SPE296-p81

  • Borsi L, Schärer U, Gaggero L, Crispini L (1996) Age, origin and geodynamic significance of plagiogranites in lherzolites and gabbros of the Piedmont-Ligurian ocean basin. Earth Planet Sci Lett 140(1–4):227–241. doi:10.1016/0012-821X(96)00034-9

    Article  Google Scholar 

  • Brooks CK, Henderson P, Rønsbo JG (1981) Rare-earth partition between allanite and glass in the obsidian of Sandy Braes, Northern Ireland. Mineral Mag 44:157–160. doi:10.1180/minmag.1981.044.334.07

    Article  Google Scholar 

  • Brophy JG (2009) La-SiO\(_{2}\) and Yb-SiO\(_{2}\) systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Miner Petrol 158(1):99–111. doi:10.1007/s00410-008-0372-3

    Article  Google Scholar 

  • Brophy JG, Pu X (2012) Rare earth element-SiO\(_2\) systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions. Contrib Miner Petrol 164(2):191–204. doi:10.1007/s00410-012-0732-x

    Article  Google Scholar 

  • Brunsmann A, Franz G, Erzinger J (2001) REE mobilization during small-scale high-pressure fluid-rock interaction and zoisite/fluid partitioning of La to Eu. Geochim Cosmochim Acta 65(4):559–570. doi:10.1016/S0016-7037(00)00544-5

    Article  Google Scholar 

  • Castelli D, Lombardo B (2007) The plagiogranite-FeTi-oxide gabbro association of Verne (Monviso metamorphic ophiolite, western Alps). Ofioliti 32(1):1–14. doi:10.4454/ofioliti.v32i1.343

    Google Scholar 

  • Chutas N (1997) Rare earth element trends in basalts and plagiogranites from the Troodos Ophiolite, Cyprus. 10th Keck symposium, pp 69–72. http://www.keckgeology.org/10th-keck-symposium-volume

  • Constantinou G (1995) Geological map of Cyprus. Geological Survrey Department, Cyprus

    Google Scholar 

  • Craddock PR, Bach W, Seewald JS, Rouxel OJ, Reeves E, Tivey MK (2010) Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim Cosmochim Acta 74(19):5494–5513. doi:10.1016/j.gca.2010.07.003

    Article  Google Scholar 

  • Dilek Y, Thy P (2006) Age and petrogenesis of plagiogranite intrusions in the Ankara mélange, central Turkey. Isl Arc 15(1):44–57. doi:10.1111/j.1440-1738.2006.00522.x

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117(1–4):251–284. doi:10.1016/0009-2541(94)90131-7

    Article  Google Scholar 

  • Feineman MD, Ryerson FJ, DePaolo DJ, Plank T (2007) Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition. Chem Geol 239(3–4):250–265. doi:10.1016/j.chemgeo.2007.01.008

    Article  Google Scholar 

  • Flagler PA, Spray JG (1991) Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19(1):70–73. doi:10.1130/0091-7613(1991)019<0070:GOPBAA>2.3.CO;2

    Article  Google Scholar 

  • Flawn PT (1951) Nomenclature of epidote rocks. Am J Sci 249(10):769–777. doi:10.2475/ajs.249.10.769

    Article  Google Scholar 

  • Floyd PA, Yaliniz MK, Goncuoglu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos 42(3–4):225–241. doi:10.1016/S0024-4937(97)00044-3

    Article  Google Scholar 

  • France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Miner Petrol 160(5):683–704. doi:10.1007/s00410-010-0502-6

    Article  Google Scholar 

  • Frei D, Liebscher A, Franz G, Dulski P (2004) Trace element geochemistry of epidote minerals. Rev Mineral Geochem 56(1):553–605. doi:10.2138/gsrmg.56.1.553

    Article  Google Scholar 

  • Freund S, Haase KM, Keith M, Beier C, Garbe-Schönberg D (2014) Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contrib Miner Petrol 167(2):1–22. doi:10.1007/s00410-014-0978-6

    Article  Google Scholar 

  • Gerlach DC, Leeman WP, Avé Lallemant HG (1981) Petrology and geochemistry of plagiogranite in the Canyon Mountain Ophiolite, Oregon. Contrib Miner Petrol 77(1):82–92. doi:10.1007/BF01161505

    Article  Google Scholar 

  • Gieré R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. Rev Mineral Geochem 56(1):431–493. doi:10.2138/gsrmg.56.1.431

    Article  Google Scholar 

  • Gillis KM (2002) The rootzone of an ancient hydrothermal system exposed in the Troodos ophiolite, Cyprus. J Geol 110(1):57–74. doi:10.1086/324205

    Article  Google Scholar 

  • Gillis KM (2003) Subseafloor geology of hydrothermal root zones at oceanic spreading centers. In: Halbach PE, Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine hydrothermal systems. Dahlem University Press, Berlin, pp 55–71

    Google Scholar 

  • Gillis KM, Roberts MD (1999) Cracking at the magma-hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth Planet Sci Lett 169(3–4):227–244. doi:10.1016/S0012-821X(99)00087-4

    Article  Google Scholar 

  • Gillis KM, Ludden JN, Smith AD (1992) Mobilization of REE during crustal aging in the Troodos Ophiolite, Cyprus. Chem Geol 98(1–2):71–86. doi:10.1016/0009-2541(92)90091-I

    Article  Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like \(\delta ^{18}\)O in zircons from oceanic plagiogranites and gabbros. Contrib Miner Petrol 161(1):13–33. doi:10.1007/s00410-010-0519-x

    Article  Google Scholar 

  • Hayes SK (1996) Epidotization of the sheeted dike-plutonic contact, Troodos Ophiolite, Cyprus. 9th Keck symposium, pp 221–224, http://www.keckgeology.org/9th-keck-symposium-volume

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS. ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302. doi:10.1111/j.1751-908X.2005.tb00901.x

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429. doi:10.1111/j.1751-908X.2011.00120.x

    Article  Google Scholar 

  • Jowitt SM, Jenkin GR, Coogan LA, Naden J (2012) Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: effects of protolith composition and alteration mineralogy. J Geochem Explor 118:47–59. doi:10.1016/j.gexplo.2012.04.005

    Article  Google Scholar 

  • Kaur G, Mehta PK (2005) The Gothara plagiogranite: evidence for oceanic magmatism in a non-ophiolitic association, North Khetri Copper Belt, Rajasthan, India? J Asian Earth Sci 25(5):805–819. doi:10.1016/j.jseaes.2004.08.003

    Article  Google Scholar 

  • Kay RW, Senechal RG (1976) The rare earth geochemistry of the Troodos Ophiolite complex. J Geophys Res 81(5):964–970. doi:10.1029/JB081i005p00964

    Article  Google Scholar 

  • Kelley DS, Delaney JR (1987) Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than \(700\,^{\circ }\text{ C }\). Earth Planet Sci Lett 83(1–4):53–66. doi:10.1016/0012-821X(87)90050-1

    Article  Google Scholar 

  • Kelley DS, Früh-Green GL (2000) Volatiles in mid-ocean ridge environments. In: Dilek Y (ed) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program, vol 349, Geol Soc Am Spec Paper, pp 237–260, doi: 10.1130/0-8137-2349-3.237

  • Kelley DS, Robinson PT (1990) Development of a brine-dominated hydrothermal system at temperatures of \(400{-}500\,^{\circ }\text{ C }\) in the upper level plutonic sequence, Troodos ophiolite, Cyprus. Geochim Cosmochim Acta 54(3):653–661. doi:10.1016/0016-7037(90)90361-N

    Article  Google Scholar 

  • Kelley DS, Robinson PT, Malpas JG (1992) Processes of brine generation and circulation in the oceanic crust: fluid inclusion evidence from the Troodos Ophiolite, Cyprus. J Geophys Res 97(B6):9307–9322. doi:10.1029/92JB00520

    Article  Google Scholar 

  • Klinkhammer GP, Elderfield H, Edmond JM, Mitra A (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim Cosmochim Acta 58(23):5105–5113. doi:10.1016/0016-7037(94)90297-6

    Article  Google Scholar 

  • Koepke J, Seidel E (2004) Hornblendites within ophiolites of Crete, Greece: evidence for amphibole-rich cumulates derived from an iron-rich tholeiitic melt. Ofioliti 29(2):159–175. doi:10.4454/ofioliti.v29i2.212

    Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 146(4):414–432. doi:10.1007/s00410-003-0511-9

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of \(\text{ SiO}_{2}\)-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Miner Petrol 153(1):67–84. doi:10.1007/s00410-006-0135-y

    Article  Google Scholar 

  • Lipfert G (1997) Epidote nodules in the sheeted intrusive complex of the Troodos Ophiolite, Cyprus. 10th Keck symposium, pp 73–76. http://www.keckgeology.org/10th-keck-symposium-volume

  • London D, Morgan GB (2012) The pegmatite puzzle. Elements 8(4):263–268. doi:10.2113/gselements.8.4.263

    Article  Google Scholar 

  • Luchitskaya MV, Morozov OL, Palandzhyan SA (2005) Plagiogranite magmatism in the Mesozoic island-arc structure of the Pekulney Ridge, Chukotka Peninsula, NE, Russia. Lithos 79(1–2):251–269. doi:10.1016/j.lithos.2004.04.056

    Article  Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47(1):11–30. doi:10.1016/0016-7037(83)90087-X

    Article  Google Scholar 

  • Malpas J (1987) Geological map of the Amiandos-Palekhori area 1:10,000. Geological Survrey Department, Cyprus

  • Mason R (1981) A trondhjemite vein in the Sulitjelma Gabbro, Norway, and its implications for the age of the Sulitjelma Ophiolite. Geol Mag 118(5):525–531. doi:10.1017/S001675680003288X

    Article  Google Scholar 

  • Michard A, Albarède F, Michard G, Minster JF, Charlou JL (1983) Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (\(13^{\circ }\text{ N }\)). Nature 303(5920):795–797. doi:10.1038/303795a0

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner Deposita 49(8):987–997. doi:10.1007/s00126-014-0554-z

    Article  Google Scholar 

  • Montanini A, Travaglioli M, Serri G, Dostal J, Ricci CA (2006) Petrology of gabbroic to plagiogranitic rocks from southern Tuscany (Italy): evidence for magmatic differentiation in an ophiolitic sequence. Ofioliti 31(2):55–69. doi:10.4454/ofioliti.v31i2.329

    Google Scholar 

  • Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu-Bonin–Mariana arc. Isl Arc 7(3):359–373. doi:10.1111/j.1440-1738.1998.00195.x

    Article  Google Scholar 

  • Nakamura K, Morishita T, Chang Q, Neo N, Kumagai H (2007) Discovery of lanthanide tetrad effect in an oceanic plagiogranite from an Ocean Core Complex at the Central Indian Ridge \(25^{\circ }\text{ S }\). Geochem J 41:135–140. doi:10.2343/geochemj.41.135

    Article  Google Scholar 

  • Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet Sci Lett 102(3–4):310–325. doi:10.1016/0012-821X(91)90026-E

    Article  Google Scholar 

  • Nehlig P, Juteau T, Bendel V, Cotten J (1994) The root zones of oceanic hydrothermal systems: constraints from the Samail ophiolite (Oman). J Geophys Res 99(B3):4703–4713. doi:10.1029/93JB02663

    Article  Google Scholar 

  • Nicolas A, Boudier F, Koepke J, France L, Ildefonse B, Mevel C (2008) Root zone of the sheeted dike complex in the Oman ophiolite. Geochem Geophys Geosyst 9(5):1–29. doi:10.1029/2007GC001918

    Article  Google Scholar 

  • Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib Miner Petrol 110(4):488–499. doi:10.1007/BF00344083

    Article  Google Scholar 

  • Oberli F, Meier M, Berger A, Rosenberg CL, Gieré R (2004) U-Th-Pb and \(^{230}\text{Th}/^{238}\text{U}\) disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68(11):2543–2560. doi:10.1016/j.gca.2003.10.017

    Article  Google Scholar 

  • Pan Y, Fleet ME (1996) Intrinsic and external controls on the incorporation of rare-earth elements in calc-silicate minerals. Can Mineral 34(1):147–159. http://canmin.geoscienceworld.org/content/34/1/147.short

  • Pedersen RB, Malpas J (1984) The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway. Contrib Miner Petrol 88(1–2):36–52. doi:10.1007/BF00371410

    Article  Google Scholar 

  • Petko CE (1997) Epidotizing fluid temperature and composition at the sheeted dike-plutonic contact, Troodos ophiolite, Cyprus. 10th Keck symposium, pp 77–80. http://www.keckgeology.org/10th-keck-symposium-volume

  • Petrík I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce): substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol Carpath 46(2):79–94, http://www.geologicacarpathica.com/browse-journal/archive-1950-1996/46-2/

  • Pin C, Paquette JL, Ábalos B, Santos FJ (2006) Composite origin of an early Variscan transported suture: ophiolitic units of the Morais Nappe Complex (north Portugal). Tectonics 25(5):TC5001. doi:10.1029/2006TC001971

    Article  Google Scholar 

  • Poitrasson F (2002) In situ investigations of allanite hydrothermal alteration: examples from calc-alkaline and anorogenic granites of Corsica (southeast France). Contrib Miner Petrol 142(4):485–500. doi:10.1007/s004100100303

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reed MJ, Candela PA, Piccoli PM (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at \(800\,^{\circ}\text{C }\) and 200 MPa. Contrib Miner Petrol 140(2):251–262. doi:10.1007/s004100000182

    Article  Google Scholar 

  • Reeves EP, Seewald JS, Saccocia P, Bach W, Craddock PR, Shanks WC, Sylva SP, Walsh E, Pichler T, Rosner M (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin,Papua New Guinea. Geochim Cosmochim Acta 75(4):1088–1123. doi:10.1016/j.gca.2010.11.008

    Article  Google Scholar 

  • Richards HG, Cann JR, Jensenius J (1989) Mineralogical zonation and metasomatism of the alteration pipes of Cyprus sulfide deposits. Econ Geol 84(1):91–115. doi:10.2113/gsecongeo.84.1.91

    Article  Google Scholar 

  • Rollinson H (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112(3–4):603–614. doi:10.1016/j.lithos.2009.06.006

    Article  Google Scholar 

  • Rollinson H (2014) Plagiogranites from the mantle section of the Oman Ophiolite: models for early crustal evolution. In: Rollinson HR, Searle MP, Abbasi IA, Al-Lazki AI, Al Kindi MH (eds) Tectonic Evolution of the Oman Mountains, vol 392, Geol Soc Lond Spec Pub, pp 247–261, doi:10.1144/SP392.13

  • Rudnev SN, Babin GA, Vladimirov AG, Kruk NN, Shokal’sky SP, Borisov SM, Travin AV, Levchenkov OA, Terleev AA, Kuibida ML (2005) Geologic setting, age, and geochemical model of the formation of West Sayan plagiogranitoids. Russ Geol Geophys 46(2):170–187

    Google Scholar 

  • Schmidt MW, Poli S (2004) Magmatic epidote. Rev Mineral Geochem 56(1):399–430. doi:10.2138/gsrmg.56.1.399

    Article  Google Scholar 

  • Silantyev SA, Aranovich LY, Bortnikov NS (2010) Oceanic plagiogranites as a result of interaction between magmatic and hydrothermal systems in the slow-spreading mid-ocean ridges. Petrology 18(4):369–383. doi:10.1134/S0869591110040041

    Article  Google Scholar 

  • Stakes DS, Taylor HP Jr (2003) Oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulphide deposits. In: Dilek Y, Robinson RT (eds) Ophiolites in Earth History, vol 218, Geol Soc Lon Spec Pub, pp 315–351, doi: 10.1144/GSL.SP.2003.218.01.17

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67(1):70–78. doi:10.1016/0012-821X(84)90039-6

    Article  Google Scholar 

  • Twining K (1996) Origin of plagiogranite in the Troodos ophiolite, Cyprus. 9th Keck symposium pp 245–248. http://www.keckgeology.org/9th-keck-symposium-volume

  • Valsami E, Cann JR (1992) Mobility of rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite, Greece. In: Parson LM, Murton BJ, Browning P (eds) Ophiolites and their Modern Oceanic Analogues, vol 60, Geol Soc Lon Spec Pub, pp 219–232. doi:10.1144/GSL.SP.1992.060.01.13

  • Vlach SRF (2012) Micro-structural and compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupá Pluton, Graciosa Province, South Brazil, and their petrological implications. An Acad Bras Ciênc 84:407–426. doi:10.1590/S0001-37652012005000024

    Article  Google Scholar 

  • Vlach SRF, Gualda GA (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, Southern Brazil. Lithos 97(1–2):98–121. doi:10.1016/j.lithos.2006.12.003

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72(41):441–446. doi:10.1029/90EO00319

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York. doi:10.1007/978-0-387-98141-3

    Book  Google Scholar 

  • Wilson RAM (1959) The geology of the Xeros-Troodos area, Geol Surv Cyprus Mem, vol 1

Download references

Acknowledgments

This study was funded by ISF research grant 1044/09 to Yaron Katzir. Niels Jöns and Wolfgang Bach acknowledge support from the DFG-Research Centre/Excellence Cluster ‘The ocean in the Earth system’. Andreas Klügel generously assisted during the LA-ICP-MS analytical sessions. We thank Chao Zhang and an anonymous reviewer for their helpful comments, and Hugh Rollinson for his review of an earlier version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Anenburg.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anenburg, M., Katzir, Y., Rhede, D. et al. Rare earth element evolution and migration in plagiogranites: a record preserved in epidote and allanite of the Troodos ophiolite. Contrib Mineral Petrol 169, 25 (2015). https://doi.org/10.1007/s00410-015-1114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1114-y

Keywords

Navigation