Skip to main content
Log in

Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba–Malosa, Malawi

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A natural, altered zircon crystal from an alkaline pegmatite from the Zomba–Malosa Complex of the Chilwa Alkaline Province in Malawi has been studied by a wide range of analytical techniques to understand the alteration process. The investigated zircon shows two texturally and chemically different domains. Whereas the central parts of the grain (zircon I) appear homogeneous in backscattered electron images and are characterised by high concentrations of trace elements, particularly Th, U, and Y, the outer regions (zircon II) contain significantly less trace elements, numerous pores, and inclusions of thorite, ytttrialite, and fergusonite. Zircon II contains very low or undetectable concentrations of non-formula elements such as Ca, Al, and Fe, which are commonly observed in high concentrations in altered radiation-damaged zircon. U–Pb dating of both zircon domains by LA-ICPMS and SHRIMP yielded statistically indistinguishable U–Pb weighted average ages of 119.3 ± 2.1 (2σ) and 118 ± 1.2 (2σ) Ma, respectively, demonstrating that the zircon had not accumulated a significant amount of self-irradiation damage at the time of the alteration event. Electron microprobe dating of thorite inclusions in zircon II yielded a Th–U-total Pb model age of 122 ± 5 (2σ) Ma, supporting the age relationship between both zircon domains. The hydrothermal solution responsible for the alteration of the investigated zircon was alkaline and rich in CO3 2−, as suggested by the occurrence of REE carbonates and CO2-bearing fluid inclusions. The alteration of the crystalline, trace element-rich zircon is explained by an interface-coupled dissolution-reprecipitation mechanism. During such a process, the congruent dissolution of the trace element-rich parent zircon I was spatially and temporally coupled to the precipitation of the trace element-poor zircon II at an inward moving dissolution-precipitation front. The driving force for such a process was merely the difference between the solubility of the trace element-rich and -poor zircon in the hydrothermal solution. The replacement process and the occurrence of mineral inclusions and porosity in the product zircon II is explained by the thermodynamics of solid solution-aqueous solution systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note also that there exists experimental evidence that dissolution does not stop before a pseudo-equilibrium state, called stoichiometric saturation (defining the maximum stoichiometric solubility), has been reached that is characterised by equal Gibbs energies in the aqueous solution and in the solid (Glynn et al. 1990). However, the basic concepts of the reaction path and the mechanistic details shown in Fig. 9 do not depend on whether such a pseudo-equilibrium state exists or does not exist.

References

  • Åmli R, Griffin WL (1975) Microprobe analysis of REE minerals using empirical correction factors. Am Mineral 60:599–606

    Google Scholar 

  • Anderson AJ, Wirth R, Thomas R (2008) The alteration of metamict zircon and its role in the remobilization of high-field-strength elements in the Georgeville granite, Nova Scotia. Can Mineral 46:1–18

    Article  Google Scholar 

  • Ayers JC, Watson EB (1991) Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Phil Trans R Soc Lond A 335:365–375

    Article  Google Scholar 

  • Breiter K, Förster H-J, Skoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 88:15–34

    Article  Google Scholar 

  • Butera KM, Williams IS, Blevin PL, Simpson CJ (2001) Zircon U-Pb dating of early Plaeozoic monzonitic intrusives from the Goonumbla area, New South Wales. Aust J Earth Sci 48:457–464

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997) Diffusion of tetravalent cations in zircon. Contrib Mineral Petrol 127:383–390

    Article  Google Scholar 

  • Cocherie A, Legendre O (2006) Potential minerals for determining U–Th–Pb chemical age using electron microprobe. Lithos 93:288–309

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev. Mineral Geochem 53:469–500

  • Eby GN, Roden-Tice M, Krueger HL, Ewing W, Faxon EH, Wooley AR (1995) Geochronology and cooling history of the northern part of the chilwa alkaline province complex, Malawi. J Afr Earth Sci 20:275–388

    Article  Google Scholar 

  • Ercit TS (2005) Identification and alteration trends of granitic-pegmatite-hosted (Y, REE, U, Th)–(Nb, Ta, Ti) oxide minerals: a statistical approach. Can Mineral 43:1291–1303

    Article  Google Scholar 

  • Ewing RC (1999) Nuclear waste forms for actinides. Proc Nat Acad Sci USA 96:3432–3439

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zrin-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Förster H-J (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 88:35–55

    Article  Google Scholar 

  • Geisler T, Pidgeon RT (2001) Significance of radiation damage on the integral SEM cathodoluminescence intensity of zircon: An experimental annealing study. N Jhb Mineral Monatsh 10:433–445

    Google Scholar 

  • Geisler T, Schleicher H (2000) Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U–Th–Pb discordance in zircon. Chem Geol 163:269–285

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003a) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 86:1496–1518

    Google Scholar 

  • Geisler T, Trachenko K, Ríos S, Dove M, Salje EKH (2003b) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): Implications for its suitability as nuclear waste form. J Phys Condens Matter 15:L597–L605

    Article  Google Scholar 

  • Geisler T, Rashwan AA, Rahn M, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003c) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  Google Scholar 

  • Geisler T, Seydoux-Guillaume A-M, Wiedenbeck M, Berndt J, Wirth R, Zhang M, Mihailova B, Putnis A, Salje EKH, Schlüter J (2004) Periodic precipitation pattern formation in hydrothermally treated metamict zircon. Am Mineral 89:1341–1347

    Google Scholar 

  • Geisler T, Burakov BE, Zirlin V, Nikolaeva L, Pöml P (2005) A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava”. Eur J Mineral 17:883–894

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Glynn PD, Reardon EJ, Plummer N, Busenberg E (1990) Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems. Geochim Cosmochim Acta 54:267–282

    Article  Google Scholar 

  • Grange ML, Nemchin AA, Pidgeon RT, Timms N, Muhling JR, Kennedy AK (2009) Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochim Cosmochim Acta 73:3093–3107

    Article  Google Scholar 

  • Guastoni A, Pezzotta F (2007) REE-mineral phases replacing helvite, niobian-rutile, bastnäsite-(Ce) from alkaline pegmatites of Mount Malosa, Zomba District, Malawi. In: Granitic Pegmatites: the State of the Art. Memorias 8:42–43

    Google Scholar 

  • Guastoni A, Pezzotta F, Demartin F (2003) Le pegmatiti di Zomba-Malosa (Malawi). Riv Mineral Ital 27:66–77

    Google Scholar 

  • Guastoni A, Nestola F, Giaretta A (2009) Mineral chemistry and alteration of rare earth element (REE) carbonates from alkaline pegmatites of Mount Malosa, Malawi. Am Mineral 94:1216–1222

    Article  Google Scholar 

  • Hanchar JM, Hoskin PWO (2003) Zircon. Reviews in mineralogy and geochemistry, vol 53, 500 pp

  • Harley SL, Kelly NM (2007) Zircon: Tiny but timely. Elements 3:13–18

    Article  Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon behaviour during low-temperature metamorphism. J Petrol 50:571–589

    Article  Google Scholar 

  • Hofmann AE, Valley JW, Watson EB, Cavosie AJ, Eiler JM (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Mineral Petrol 158:317–335

    Article  Google Scholar 

  • Högdahl K, Jonsson E (2002) CL characteristics versus Th, U, Hf contents in alkaline pegmatite-hosted zircon. In: Jónsson SS (ed) The 25th nordic geological winter meeting January 6th–9th 2002. Reykjavik, Iceland Abstract Volume

    Google Scholar 

  • Högdal K, Jonsson E (1999) Age and mineral assemblages of agpaitic pegmatites in the chilwa alkaline province, Malawi, SE Africa. J Conf Abs 4(1):767 (http://www.the-conference.com/JConfAbs.html)

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamor Geol 18:423–439

    Article  Google Scholar 

  • Izenman AJ (2008) Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer, London, p 731

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338

    Article  Google Scholar 

  • Kovalenko NI, Ryzhenko BN (2009) Comparative study of the solubility of zircon and baddeleyite. Geochem Int 47:405–413

    Article  Google Scholar 

  • Kulik DA (2002) A Gibbs energy minimization approach to modeling sorption equilibria at the mineral-water interface: thermodynamic relations for multi-site-surface complexation. Am J Sci 302:227–279

    Article  Google Scholar 

  • Kusiak MA, Dunkley DJ, Slaby EMartin E, Budzyń B (2009) Sensitive high-resolution ion microrpobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton. Geology 37:1063–1066

    Article  Google Scholar 

  • Kutty TRN, Padmini P (1995) Mechanism of BaTiO3 formation through gel to crystallite conversion. Mater Chem Phys 39:200–208

    Article  Google Scholar 

  • Lee JKW, Tromp J (1995) Self-induced fracture generation in zircon. J Geophys Res 100(B9):17753–17770

    Google Scholar 

  • Lenting C, Geisler T, Gerdes A, Kooijman E, Scherer EE, Zeh A (2010) The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration. Am Mineral (accepted)

  • Lippmann F (1980) Phase diagrams depicting the aqueous solubility of binary mineral systems. N Jhb Mineral Abh 139:1–25

    Google Scholar 

  • Ludwig KR (2001a) Squid 1.02: an Excel add-in program that processes SHRIMP-output files for geochronologic U-Th-Pb analyses. Berkeley Geochronological Center, Special Publication No 2: 19 p

  • Ludwig KR (2001b) Users manual for isoplot/ex version 2.49. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special Pubication No. 1a, Berkeley

  • Martin RF, De Vito C (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Can Mineral 43:2027–2048

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Miner 7:471–478

    Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Vaczi T (2010) Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett J Geostand Geoanal 21:115–144

    Article  Google Scholar 

  • Petersen OV, Grossmann M (1994) Some pegmatite minerals from the Zomba district, Malawi. Mineral Rec 25:29–38

    Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  • Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, van Bronswijk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. In: Abstract volume 8th international conference on geochronology and cosmochronology isotope geology. Berkeley. US Geol Surv Circ 1107:251

  • Pointer CM, Ashworth JR, Ixer RA (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria 1. Zoning, alteration and exsolution in zircon. Mineral Petrol 39:21–37

    Article  Google Scholar 

  • Prìetro M (2009) Thermodynamics of solid solution-aqueous solution systems. Rev Min Geochem 70:47–85

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Min Geochem 70:87–124

    Article  Google Scholar 

  • Putnis CV, Tsukamoto K, Nishimura Y (2005) Direct observations of pseudomorphism: compositional and textural evolution at a fluid-solid interface. Am Mineral 90:1909–1912

    Article  Google Scholar 

  • Rizvanova NG, Levchenkov OA, Belous AE, Bezmen NI, Maslenikov AV, Komarov AN, Makeev AF, Levskiy LK (2000) Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contrib Mineral Petrol 139:101–114

    Google Scholar 

  • Rubatto D, Müntener O, Barnhoorn A, Gregory C (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am Mineral 93:1519–1529

    Article  Google Scholar 

  • Salje EKH, Chrosch J, Ewing RC (1999) Is “metamictization” of zircon a phase transition? Am Mineral 84:1107–1116

    Google Scholar 

  • Spandler C, Hermann J, Rubatto D (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. Am Mineral 89:1795–1806

    Google Scholar 

  • Suzuki K, Adachi M (1998) Denudation history of the high T/P Ryoke metamorphic belt, Southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. J Metam Geol 16:23–37

    Article  Google Scholar 

  • Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141:49–65

    Article  Google Scholar 

  • Thöni M, Miller C, Zanetti A, Habler G, Goessler W (2008) Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol 254:216–237

    Article  Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002

    Article  Google Scholar 

  • Tromans D (2006) Solubility of crystalline and metamict zircon: a thermodynamic analysis. J Nucl Mater 357:221–233

    Article  Google Scholar 

  • Ushakov SV, Gong W, Yagovkina MM, Helean KB, Lutze W, Ewing RC (1999) Solid solution of Ce, U, and Th in zircon. Ceram Trans 93:357–363

    Google Scholar 

  • Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676

    Article  Google Scholar 

  • Utsunomiya S, Valley JW, Cavosie AJ, Wilde SA, Ewing RC (2007) Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chem Geol 236:92–111

    Article  Google Scholar 

  • Van Achterbergh E, Ryan C, Jackson S, Griffin WL (2001) Appendix 3: data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser-ablation-ICPMS in the earth sciences. Mineralogical Association of Canada Short Course, vol 29, pp 239–243

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC, Riley WI (eds) Applications of microanalytical techniques to understanding mineralising processes. Reviews in Economic Geology 7:1–35

  • Williams IS, Hergt JM (2000) U-Pb dating of Tasmanian dolerites: a cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead J D, Hergt JM, Noble W P (eds) Beyond 2000: new frontiers in isotope geoscience. Lorne (Abstracts and Proceedings, 185–188)

  • Wooley AR, Jones GC (1992) The alkaline/peralkaline syenite-granite complex of Zomba-Malosa, Malawi: mafic mineralogy and genesis. J Afr Earth Sci 14:1–12

    Article  Google Scholar 

  • Woolley AR (1991) The Chilwa alkaline igneous province of Malawi: a review. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings—the Phanerozoic African plate. Springer, Berlin, pp 377–409

    Google Scholar 

  • Xie L, Wang R, Chen X, Qiu J, Wang D (2005) Th-rich zircon from peralkaline A-type granite: mineralogical features and petrological implications. Chin Sci Bull 50:809–817

    Google Scholar 

  • Yuan H, Gao S, Liu X, Li H, Günther D, Wu F (2004) Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 28:353–370

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank C. Rewitzer for providing the investigated specimens from Mt Malosa, S. Heidrich for her help setting up the electron microprobe, and John Hanchar and Paul Hoskin for very helpful reviews. Financial support of the German Research Foundation through a research grant (GE1094/11-1) and a Heisenberg Scholarship to TG (GE1094/12-1) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Geisler.

Additional information

Communicated by C. Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soman, A., Geisler, T., Tomaschek, F. et al. Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba–Malosa, Malawi. Contrib Mineral Petrol 160, 909–930 (2010). https://doi.org/10.1007/s00410-010-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0514-2

Keywords

Navigation