Skip to main content
Log in

Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Li contents and its isotopes of minerals in mantle peridotite xenoliths from late Cretaceous mafic dikes, analyzed in situ by Cameca IMS-1280, reveal the existence of melt/rock interaction in remains of refertilized Archean lithospheric mantle in Qingdao, Jiaodong Peninsula, North China Craton. Two groups of peridotites exist, i.e., low-Mg# lherzolite and high-Mg# harzburgites. The low-Mg# lherzolite has a relatively homogeneous Li concentration (ol: 2.01–2.11 ppm; opx: 1.77–1.88 ppm; cpx: 1.75–1.93 ppm) and Li isotopic composition (δ7Li in ol: 4.2–7.6‰; in opx: 6.0–8.3‰; in cpx: 5.3–8.4‰). The similarity in δ7Li value to the fresh MORB provides further evidence for the argument that the low-Mg# lherzolite could be the fragment of the newly accreted lithospheric mantle. The high-Mg# harzburgites have heterogeneous Li abundances (ol: 0.83–2.09 ppm; opx: 0.92–1.94 ppm; cpx: 1.12–4.89 ppm) and Li isotopic compositions (δ7Li in ol: −0.5 to +11.5‰; in opx: −6.2 to +11.1‰; in cpx: −34.3 to +10.1‰), showing strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The cores of most minerals in these high-Mg# harzburgites have relatively homogeneous δ7Li values, which are higher than those of fresh MORB, but similar to those previously reported for arc lavas. These harzburgites have enriched trace elemental and Sr–Nd isotopic compositions. These observations indicate that in the early Mesozoic the lithospheric mantle beneath the southeastern North China Craton was similar to that in arc settings, which is metasomatized by subducted crustal materials. Extremely low δ7Li preserved in cpxs requires diffusive fractionation of Li isotopes from later-stage melt into the minerals. Thus, the Li data provide further evidence that the Archean refractory lithospheric mantle represented by the high-Mg# harzburgites was refertilized through melt/rock interaction and transformed to the Mesozoic less refractory and incompatible element and Sr–Nd isotopes enriched lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agostini S, Ryan JG, Tonarini S, Innocenti F (2008) Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet Sci Lett 272:139–147

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Aulbach S, Rudnick RL (2009) Origins of non-equilibrium lithium isotope fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27

    Article  Google Scholar 

  • Aulbach S, Rudnick RL, McDonough WF (2008) Li-Sr-Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib Mineral Petrol 155:79–92

    Article  Google Scholar 

  • Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825

    Article  Google Scholar 

  • Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79

    Article  Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998) Behaviour of boron, beryllium and Lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141

    Article  Google Scholar 

  • Brooker RA, Jamesl RH, Blundy JD (2004) Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204

    Article  Google Scholar 

  • Chan LH, Edmond JM (1988) Variations of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717

    Article  Google Scholar 

  • Chan LH, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochem Geophys Geosyst 4. doi:10.1029/2002GC000365

  • Chan LH, Kastner M (2000) Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluids processes and sediments contribution to the arc volcanoes. Earth Planet Sci Lett 183:275–290

    Article  Google Scholar 

  • Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts—implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Article  Google Scholar 

  • Chan LH, Gieskes JM, You CF, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454

    Article  Google Scholar 

  • Chan LH, Alt JC, Teagle DAH (2002a) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP sites 504B and 896A. Earth Planet Sci Lett 201:187–201

    Article  Google Scholar 

  • Chan LH, Leeman WP, You CF (2002b) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300

    Article  Google Scholar 

  • Chan LH, Lassiter JC, Hauri EH, Hart SR, Blusztajn J (2009) Lithium isotope systematics of lavas from the Cook-Austral Islands: constraints on the origin of HIMU mantle. Earth Planet Sci Lett 277:433–442

    Article  Google Scholar 

  • Decitre SE, Deloule E, Reisberg L, James R, Agrinier P, Mével C (2001) Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochem Geophys Geosyst 2:178

    Google Scholar 

  • Fan WM, Guo F, Wang YJ, Zhang M (2004) Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen. Chem Geol 209:27–48

    Article  Google Scholar 

  • Flesh GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 7Li/6Li determination. Int J Mass Spectrom Ion Phys 12:265–272

    Article  Google Scholar 

  • Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296

    Article  Google Scholar 

  • Gao S, Rudnick R, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett 198:307–322

    Article  Google Scholar 

  • Halama R, Savov IP, Rudnick RL, McDonough WF (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol 158(2):197–222

    Article  Google Scholar 

  • Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331

    Article  Google Scholar 

  • James RH, Rudnicki MD, Palmer MR (1999) The alkali element and boron geochemistry of the Escanaba Trough sediment-hostd hydrothermal system. Earth Planet Sci Lett 171:157–169

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • Kaliwoda M, Ludwig T, Altherr R (2008) A new SIMS study of Li, Be, B and δ7Li in mantle xenoliths from Harrat Uwayrid (Saudi Arabia). Lithos 106(3–4):261–279

    Article  Google Scholar 

  • Košler J, Magna T, Mlcoch B, Mixa P, Nýlt D, Holub FV (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218

    Article  Google Scholar 

  • Li SG, Xiao YL, Liou DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR, Wang SS (1993) Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites—timing and processes. Chem Geol 109:89–111

    Article  Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Article  Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243(3–4):336–353

    Article  Google Scholar 

  • Mallmann G, O’Neill H, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Mineral Petrol 158:485–504

    Article  Google Scholar 

  • Marschall HR, Pogge von Strandmann PAE, Seitz HM, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580

    Article  Google Scholar 

  • Menzies M, Xu YG, Zhang HF, Fan WM (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96:1–21

    Article  Google Scholar 

  • Moriguti T, Nakamura E (1998a) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174

    Article  Google Scholar 

  • Moriguti T, Nakamura E (1998b) High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chem Geol 145:91–104

    Article  Google Scholar 

  • Mungall JE (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochim Cosmochim Acta 66:125–143

    Article  Google Scholar 

  • Nakamura E, Kushiro I (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochim Cosmochim Acta 62:3151–3160

    Article  Google Scholar 

  • Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261

    Article  Google Scholar 

  • Ottolini L, Laporte D, Raffone N, Devidal JL, Le FB (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Mineral Petrol 157:313–325

    Article  Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Article  Google Scholar 

  • Richter FM, Davis AM, Depaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalts and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Article  Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293

    Article  Google Scholar 

  • Seitz HM, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64

    Article  Google Scholar 

  • Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Ying JF (2007a) Review of the lithium isotope systems as a geochemical tracer. Int Geol Rev 49:274–388

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007b) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt/rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341

    Article  Google Scholar 

  • Tang YJ, Moriguti T, Zhang HF, Nakamura E, Tanaka R, Kobayashi K, Ying JF (2009) Li–Sr–Nd isotopic disequilibrium between minerals of peridotite xenoliths from the North China Craton: evidence for multistage melt–peridotite interactions in the refertilized lithospheric mantle. Geochim Cosmochim Acta (in press)

  • Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710

    Article  Google Scholar 

  • Teng FZ, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu YS (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59

    Article  Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. In: Johnson CM, Beard BI, Albarede F (eds) Geochemistry of non-traditional stable isotope: reviews in mineralogy and geochemistry, vol 55. Mineral Society of America, Washington DC, pp 153–195

    Google Scholar 

  • Tomascak PB, Tera F, Helz R, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Article  Google Scholar 

  • Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama sub-arc mantle. Geology 28:507–510

    Article  Google Scholar 

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238

    Article  Google Scholar 

  • Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637

    Article  Google Scholar 

  • Vlastélic I, Koga K, Chauvel C, Jacques G, Télouk P (2009) Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain. Earth Planet Sci Lett 286:456–466

    Article  Google Scholar 

  • Wagner C, Deloule E (2007) Behaviour of Li and its isotopes during metasomatism of French Massif Central lherzolites. Geochem Cosmochem Acta 71:4279–4296

    Article  Google Scholar 

  • Wang YJ, Fan WM, Peng TP, Zhang HF, Guo F (2005) Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: evidence from 40Ar/39Ar geochronology, elemental and Sr–Nd–Pb isotopic compositions of early Cretaceous mafic rocks. Chem Geol 220:165–189

    Article  Google Scholar 

  • Woodland AB, Seitz HM, Yaxley GM (2004) Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos 75:55–66

    Article  Google Scholar 

  • Wu FY, Walker RJ, Yang YH, Yuan HL, Yang JH (2006) The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta 70:5013–5034

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120

    Article  Google Scholar 

  • Xu YG, Ma JL, Huang XL, Iizuka Y, Chung SL, Wang YB, Wu XY (2004) Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. Int J Earth Sci 93:1025–1041

    Article  Google Scholar 

  • Ying JF, Zhou XH, Zhang HF (2004) Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China and implications for their petrogenesis and enriched mantle source. Lithos 75:413–426

    Article  Google Scholar 

  • Ying JF, Zhang HF, Kita N, Morishita Y, Shimoda G (2006) Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong province, China. Earth Planet Sci Lett 244:622–638

    Article  Google Scholar 

  • You CF, Chan LH (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Article  Google Scholar 

  • Zhang HF, Sun M (2002) Geochemistry of Mesozoic basalts and mafic dikes in southeastern North China Craton and tectonic implication. Int Geol Rev 44:370–382

    Article  Google Scholar 

  • Zhang L, Chan LH, Gieskes JM (1998) Lithium isotope geochemistry of pore waters, Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochim Cosmochim Acta 62:2437–2450

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144:241–253

    Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Ying JF (2005) Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos 81:297–317

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008a) Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Minerol Petrol 155:271–293

    Article  Google Scholar 

  • Zhang J, Zhang HF, Ying JF, Tang YJ, Niu LF (2008b) Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region, China: a petrological record. Island Arc 17(2):231–241

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y (2009a) Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os–Sr–Nd isotopic constraints. J Geol Soc London 166:249–259

    Article  Google Scholar 

  • Zhang J, Zhang HF, Kita N, Shimoda G, Morishita Y, Ying JF (2009b) Secular evolution of the lithospheric mantle beneath eastern North China Craton: evidence from peridotitic xenoliths from Late Cretaceous mafic rocks in Jiaodong region, China. Int Geol Rev. doi:10.1080/00206810903025090

Download references

Acknowledgments

Authors would like to thank X.H. Li, Y. Liu and G.Q. Tang for their assistance with Li isotope analyses in the Cameca IMS-1280 at the SIMS Lab of State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences. This research was financially supported by the Nature Science Foundation of China (Grant 90714008; 40721062; 40523003) and the Chinese Academy of Sciences (Grant KZCX2-YW-103 and Bairenjihua project). Fund from the State Key Laboratory of Lithospheric Evolution is appreciated for E. Deloule’s 2-week stay in Beijing, who helped us to set up the Li isotope analyses at the SIMS Lab. Horst Marschall is thanked for the suggestion on the earlier version of the manuscript. We are indebted to critical reviews and thoughtful comments by Paul Tomascak and Sonja Aulbach and the editorial suggestions of Timothy L. Grove.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fu Zhang.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2009_476_MOESM1_ESM.jpg

Intra-grain Li content and Li isotopic variation in sample PSK03-1212. Reflected light micro-image after the ion-probe analysis and the black dot shows the hole of the analysis. (JPG 1092 kb)

410_2009_476_MOESM2_ESM.jpg

Intra-grain Li content and Li isotopic variation in sample PSK03-43. Spinel aggregation in slice-scanning image (A) indicates the melt ingress, and the squares show the location of images B and C. (JPG 1374 kb)

Intra-grain Li content and Li isotopic variation in sample PSK03-48. (JPG 881 kb)

Intra-grain Li content and Li isotopic variation in sample PSK03-410. (JPG 629 kb)

Intra-grain Li content and Li isotopic variation in sample PSK03-414. (JPG 961 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HF., Deloule, E., Tang, YJ. et al. Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contrib Mineral Petrol 160, 261–277 (2010). https://doi.org/10.1007/s00410-009-0476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0476-4

Keywords

Navigation