Skip to main content

Advertisement

Log in

Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Chan L-H, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717

    Article  Google Scholar 

  • Chan L-H, Edmond JM, Thompson G (1993) A lithium isotopic study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. J Geophy Res 98:9653–9659

    Article  Google Scholar 

  • Chan L-H, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Article  Google Scholar 

  • Chan L-H, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau Volcano. Geochem Geophys Geosyst 4(3):8707; doi:10.1029/2002GC000365

    Google Scholar 

  • Chan L-H, Gieskes JM, You CF, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454

    Article  Google Scholar 

  • Chan L-H, Leeman WP, You CF (2002) Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids, correction. Chem Geol 182:293–300

    Article  Google Scholar 

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Article  Google Scholar 

  • Govindaraju K (1994) Complication of working values and sample descripitions for 383 geostandards. Geostandards Newsl 18:1–55

    Google Scholar 

  • Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370:205–208

    Article  Google Scholar 

  • Ishikawa T, Tera F (1997) Source, composition and distribution of the fluid in the Kurile mantle wedge: constraints from across-arc variations of B/Nb and B isotopes. Earth Planet Sci Lett 152:123–138

    Article  Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65:4523–4537

    Article  Google Scholar 

  • James RH, Allen DE, Seyfried WE Jr (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim Cosmochim Acta 67:681–691

    Article  Google Scholar 

  • James RH, Palmer MR (2000) The lithium isotope composition of international rock standards. Chem Geol 166:319–326

    Article  Google Scholar 

  • Jeffcoate AB, Elliot T, Thomas A, Boumann C (2004) Precise, small sample determinations of lithium compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostandards Newsl 28:1–12

    Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the trinity ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Article  Google Scholar 

  • Lynton SL, Walker RJ, Candela PA (2005) Lithium isotopes in the system Qz-Ms-fluid: an experimental study. Geochim Cosmochim Acta 69:3337–3347

    Article  Google Scholar 

  • Magna T, Wiechert UH, Halliday AN (2004) Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int J Mass Spectrom 239:67–76

    Article  Google Scholar 

  • Moriguti T, Nakamura E (1998a) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174

    Article  Google Scholar 

  • Moriguti T, Nakamura E (1998b) High-yield lithium separation and the precise analysis of natural rock and aqueous samples. Chem Geol 145:91–104

    Article  Google Scholar 

  • Nishio Y, Nakai S (2002) Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled mass spectrometry. Anal Chim Acta 21836:1–11

    Google Scholar 

  • Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumo T, Prikhod´ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261

    Article  Google Scholar 

  • Oi T, Nomura M, Musashi M, Ossaka T, Okamoto M, Kakihana H (1989) Boron isotopic compositions of some boron minerals. Geochim Cosmochim Acta 53:3189–3195

    Article  Google Scholar 

  • Oi T, Odagiri T, Nomura M (1997) Extraction of lithium from GSJ rock reference samples and determination of their lithium isotopic compositions. Anal Chim Acta 340:221–225

    Article  Google Scholar 

  • Paqin J, Altherr R, Ludwig T (2004) Li-Be-B systematics in the ultrahigh-pressure garnet peridotite from Alpe Arami (Central Swiss Alps): implications for slab-to-mantle wedge tranfer. Earth Planet Sci Lett 218:507–519

    Article  Google Scholar 

  • Potts PJ, Tindle AG, Webb PC (1992) Geochemical reference material compositions. Whittles Publishing Services, CRC Press Inc., Latherronwheel Caithness, 313 pp

  • Richter FM, Davis AM, DePaolo DJ, Watson B (2003) Isotope fractionation by chemical diffusion between molton basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Article  Google Scholar 

  • Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosyst 4(8):9005; doi:10.1029/2002GC000438

    Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741

    Article  Google Scholar 

  • Schmidt MW, Poli S (2004) Generation of mobile components during subduction of oceanic crust. In: Rudnick RL (ed) Treatise on geochemistry, The crust, Elsevier, Oxford, UK, vol 3. pp567–591

  • Seitz H-J, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperatures between olivine and pyroxenes. Chem Geol 212:163–177

    Article  Google Scholar 

  • Seyfried WE Jr, Chen X, Chan L-H (1998) Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350°C, 500 bars. Geochim Cosmochim Acta 62:949–960

    Article  Google Scholar 

  • Strehlow FWE, Weinert CHSW, van der Walt TN (1974) Separation of lithium from sodium, beryllium and other elements by cation-exchange chromatography in nitric acid-methanol. Anal Chim Acta 71:123–132

    Article  Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpe C, Tomascak PB, Chappel BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. In: Johnson CM, Beard BI, Albarede F (ed) Geochemistry of non-traditional stable isotopes: Reviews in mineralogy and geochemistry, Mineral Soc Am, Washington, DC, vol 55. pp153–195

  • Tomascak PB, Carlson SB, Shirey SB (1999a) Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS. Chem Geol 158:145

    Article  Google Scholar 

  • Tomascak PB, Langmuir CH (1999) Lithium isotope variability in MORB. EOS Trans AGU 80:1086–1087

    Google Scholar 

  • Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama subarc mantle. Geology 28:507–510

    Article  Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999b) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Article  Google Scholar 

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budges in island arcs. Earth Planet Sci Lett 196:227–238

    Article  Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134

    Article  Google Scholar 

  • Woodland AB, Seitz H-M, Altherr R, Marschall H, Olker B, Ludwig T (2002) Li abundances in eclogite minerals: a clue to a crustal or mantle origin? Contrib Mineral Petrol 143:587–601

    Article  Google Scholar 

  • Woodland AB, Seitz H-J, Yaxley GM (2004) Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos 75:55–66

    Article  Google Scholar 

  • Wunder B, Andrut M, Wirth R (1999) High-pressure synthesis and properties of OH-rich topaz. Eur J Mineral 11:803–813

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216

    Article  Google Scholar 

  • Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T, Ooi K (2001) Theoretical estimation of lithium isotopic reduced partition function ratio of lithium ions in aqueous solution. J Phys Chem A 105:602–613

    Article  Google Scholar 

  • You CF, Chan L-H (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during hydration in subducted oceanic crust: Earth Planet. Sci Lett 208:279–290

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to H. Steigert for the sample preparation and technical assistance. Thanks are also due to H. Becker and P.B. Tomascak, who critically reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Wunder.

Additional information

Editorial Responsibility: Jochen Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunder, B., Meixner, A., Romer, R.L. et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151, 112–120 (2006). https://doi.org/10.1007/s00410-005-0049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0049-0

Keywords

Navigation